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Model granular assemblies in which grains are assumed rigid and frictionless at equilibrium under some
prescribed external load, are shown to possess, under generic conditions, several remarkable mechanical
properties, related to isostaticity and potential energy minimization. Isostaticity—the uniqueness of the contact
forces, once the list of contacts is known—is established in a quite general context, and the important distinc-
tion between isostatiproblemsunder given external loads and isostdtigid) structuresis presented. Com-
plete rigidity is only guaranteed, on stability grounds, in the case of spherical cohesionless grains. Otherwise,
the network of contacts might deform elastically in response to small load increments, even though grains are
perfectly rigid. In general, one gets an upper bound on the contact coordination number. The approximation of
small displacements that is introduced and discussed allows analogies to be drawn with other model systems
studied in statistical mechanics, such as minimum paths on a lattice. It also entails the uniqueness of the
equilibrium state(the list of contacts itself is geometrically determipéadr cohesionless grains, and thus the
absence of plastic dissipation in rearrangements of the network of contacts. Plasticity and hysteresis are related
to the lack of such uniqueness, which can be traced back, apart from intergranular friction, to nonreversible
rearrangements of small but finite extent, in which the system jumps between two distinct potential energy
minima in configuration space, or to bounded tensile forces, deriving from a nonconvex potential, in the
contacts. Properties of response functions to load increments are discussed. On the basis of past humerical
studies, it is argued that, provided the approximation of small displacements is valid, displacements due to the
rearrangements of the rigid grains in response to small load increments, once averaged on the macroscopic
scale, are solutions to elliptic boundary value problésasilar to the Stokes problem for viscous incompress-
ible flow).

PACS numbds): 83.70.Fn, 05.40-a, 45.05+x

[. INTRODUCTION stress visualizatiorf4,5] and carbon paper print analysis
[6,7]. They have also been studied in numerical simulations
[8,9], and some attempts at theoretical descriptions have
A |arge research effOI’t, in both the statistical phySiCS ancbeen propose@lo]_ Such pecu”ar aspects Of granu|ar Sys_
the mechanics and civil engineering communities, is curtems render more difficult the reference to existing models
rently being devoted to granular materials, aiming in particUrom other fields. Indeed, a recent trend in the physics litera-
lar at a better understanding of the relationships betweefire on static granular systeris1—14 insists on their dif-
grain-level micromechanicgntergranular contact lawsaand  ference from ordinary, elastic solids, and suggests searching
macroscopic behaviorglobal equilibrium conditions, con- for direct relations betwen the components of the stress ten-
stitutive relationy [1—3]. This aim—the traditional program sor, instead of resorting to macroscopic displacement or
of statistical mechanics—is far from fully achieved in densestrain variables.
granular systems near equilibrium, for one is facing at least The second basic difficulty stems from the incomplete
two fundamental difficulties. knowledge of the mechanical properties of granular systems,
First, the nonsmooth character of contact laws that inespecially those ruling the dynamics. When a granular
volve unilaterality and, possibly, dry friction is a common sample is submitted to some prescribed external actions that
feature of granular assemblies which endows them with are sufficiently slowly changing in time, its evolution is cus-
high level of disorder and a high sensitivity to perturbations.tomarily described as an ordered set of equilibrium states
Tiny motions might significantly affect the way forces are that are successively reached, with little or no dependence on
transmitted, since contacts between neighboring grains miglgthysical time. The physical processes by which kinetic en-
open or closdand the sliding or nonsliding status of closed ergy is dissipated are, however, most often somewhat mys-
ones might change Hence the characteristically heteroge- terious or poorly characterized. They are, in the framework
neous aspect of force transport in dense granulates: largef the quasistaticdescription we have just mentioned, im-
forces are carried by a network of preferred pdthe “force  plicitly regarded as irrelevant. One might wish to assess the
chains”) while some grains or sets of grains carry only veryvalidity of such an assumption. Numerical simulations,
small forces(“arching effect”). The histogram of contact which have to adopt some rule to move the grains, could in
forces spans a wide range. These phenomena have been exinciple allow useful investigations of the influence of the
perimentally observed thanks to techniques like photoelastidynamics. However, in view of the practical difficulty of
obtaining representative configurations close enough to equi-
librium within a reasonable computation time, they some-
*Electronic address: Jean-Noel.Roux@Icpc.fr times resort to nonphysical parameters, and pick up the dy-

A. Motivations
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namical rule among the restricted range of those that allovdisplacements, and compare the determination of equilibrium
tractable calculations. states of such systems with other mechanical or scalar trans-
This paper addresses both those basic concerns, in th@rt problems. Section VIII introduces the additional re-
following way. Simplifying assumptions are introducedle ~ quirement of stability, outside the approximation, which is
consider, e.g., rigid frictionless grainghus restricting our ~dealt with, in the absence of friction, in terms of potential
attention to a certain class of model systems, which, how€nergy minimization. In some restricted models, this allows
ever, are argued to exhibit the same qualitative behaviors #¥1€ t0 prove that the structure is isostatic, a stronger property
more realistic ones. Those systems are suitable candidates f}" Mmere isostaticity of the problem under a given load. Itis
test, most easily by numerical means, some recently prot_hen pos&ble to discuss t_he possible origins of plastlcny in
posed models and speculations, at the expense of rather Systems of frictionless grains and the form of the mechanical

tensive numerical computations. The purpose of the preseﬁTjgi%nsfex:rT;‘gé%a%'n:rr]etrﬁeenrt)slé Tgfe d??ﬂgl:&isng'tgn?n'
article is not, however, to present new results of numericaf 9 ’ P

simulations. We shall state and establish, rather, with a faingIer] in granular materials and suggestions for future re-

level of generality, some basic properties of such systems,
and study their qualitative consequences in terms of macro-
scopic mechanical behavior. This analysis will shed some
light on some analogies with and differences from other pre- We are interested in the modeling of large packings of
viously studied problems in statistical mechanics, such asolid bodies(graing in equilibrium under some prescribed
directed “polymers” in random environments and percola-external forces. Grains are assumed to interact via point
tion models. It will also, along with the exploitation of past forces mutually exerted on their surfaces, which means that
numerical results on a simplified modédl5,9,16—18 allow the distribution of stress on their areas of contact or of influ-
us to investigate the possible origins of some macroscopignce can effectively be viewed as localized at a point, on the
features of granular mechanics, which are classically modscale of the whole grain. Apart from this reservation, which
eled with elastoplastic constitutive lavi8,19], and to dis- excludes flat or conforming surfacésgyrains might have ar-
cuss other recently proposed approadtes-14. bitrary shapes, and our considerations apply to spatial dimen-
We will show that mechanics is to a large extent deter-siond equal to 2 or 3, although most examples will be taken
mined by geometrical aspectsteric exclusioh thus par- from two-dimensional systems of disks. Note that we do not
tially answering concerns about the role of dynamical paramrequire interacting grains to touch one another at this stage.
eters. Finally, we will discuss the status of displacement andVe mostly restrict our attention here toctionlessbodies,
strain variables in quasistatic assemblies of rigid grains andle., such that contact forces are normal to the grain surfaces.

II. BASIC DEFINITIONS AND PROPERTIES

give perspectives for future investigations. This might look like a severe limitation, but we shall argue
that such simplified systems do possess the generic proper-
B. Synopsis ties of granular media. We shall also assume, unless other-

) ) , wise specified, that the grains behave as rigid undeformable
The paper is composed of two main parts. First, Secsobjects.

[I-V introduce useful definitions and state basic properties

that are necessary for the derivation of the main results. A. System, external forces
Thus, Sec. Il presents useful definitions and mechanical . . L
properties of static granular systems, i.e., collections of rigid1<V.V;a coInS|derha S;‘etthm grains, Ik?tt)elt?ld w;]th |nd|ce‘|‘s W'tth .
bodies essentially interacting via point forces mutually ex- E.'En' . nhteac ot them dwe a_ltrhl_{arly Ct oosfe a cer; e;'h
erted on their surfaces. Those notions, which include th&'cN MIGNY, €.g., coincide with 1tS center of mass. in the
theorem of virtual power, generalized forces and velocitiesd5€ of ;pherlcal grains it Is of course co_nvemegnt (o take the
for collective degrees of freedom, and the degree of indeter?ec_’metr'cfl ﬁenter of the i/phere. Thixc(lmﬁnsmn_a)rll veh-
minacy of forces and velocities, are not always familiar in!0Cities of those centers,V();<i<,, together with the

the condensed matter physics community. Section 1l introd’ -dimensional [with d’=d(d—1)/2] angular velocities

duces potential energy minimization problems for varioust¢2)1=i=n, Mmake up the kinematic degrees of freedom of

simple frictionless contact laws. Section IV defines the ap{h€ whole system, thus labeled by couples of indidea)(
l<i=nand Isasd+d’'=d(d+1)/2. Wedenote as

proximation of small displacements, a modeling step of botHVith ) .

technical and conceptual importance, since it allows, in parl the set of such couples. i>d, V; , is now a notation for

ticular, an analogy with problems of scalar transport on dis{i.«—d- Boundary conditions are often enforced by prescrib-

crete networks, as explained in Sec. V. ing the motion, or the abs.ence qf motion, Qf walls. Tr_]ose
Once those essential ingredients are made available, tHBight be regarded as solid bodies or particular “grains”

second part of the papéBecs. VI-IX establishes the main themselves._ In the following we shall sor_net|me_s write down

results and discusses their consequences, with reference l@§9e “velocity vectors” that gather al; kinematic degrees

previous theoretical and numerical work, and to known asOf freedom of the system, then denoted with a single index as

pects of the mechanical behavior of granular materials. Se(f—vu)KMSNf-

tion VI is devoted to thegeneric isostaticity propertyof

equilibrium states in systems of rigid grains that may exert

only normal contact forces on one another. We then prove 'Our considerations do apply, in fact, to flat surfaces, provided

and discuss$Sec. VII) theuniquenessf the equilibrium state  face to face contacts are countedimes ind dimensions, as they

in cohesionless systems within the approximation of smaltransmit one force and—1 torques.
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It might also be convenient to keep some grain coordi-
nates fixed(thus choosing one particular Galilean fragme Ay
i.e., to impose, for all coupleisa belonging to some subset
lo of I, Vi ,=0. The indicesu are then renumbered, aig
is reduced accordingly, to label and to count the free kine-
matic parameters. Another classical way to impose some
boundary conditions is to require, for alJla in some subset
I, of I, V; , to depend linearly on one or several parameters,

e.g.,
Vi,a:Ai,a)\ll (ina)6|1y (21)

X
S84 35 ¢ T 8§ »

introducing some collective ‘“generalized velocity’h ;.
Once again, in such a cade; is reduced to count elements FIG. 1. SystemA: a pile under gravity. The bottom boundary

of IN(IoUl4), plush,. _ - conditions are explained in the text.
At least locally, it is possible to regard velocities and

generalized kinematic parametgtie \; in Eq. (2.1] as  point and depend on that point. Thus the definition of “con-
time derivatives of spatial coordinates, which we shall do ingiant velocities.” or of “constant forces” requires some
the following, thus writing, e.9.V; ,=dX; ,/dt. As we are  care. However, these difficulties are inessential in our subse-
interested only in those properties that do not depend oOgyent treatment, and we shall assume that “constant external

dynamics, grain trajectories might as well be described byorces are applied, and derive for the potential energy
any parameter, not necessarily by physical time. In the case

of kinematic constraints of typ€.1), parameters\; , will N

be regarded as fixed, although positions of the grains and the wW=-— >, Fff‘x#. (2.4
walls change. One then defines a generalized coordibgte u=1

such thatdA,/dt=\4. Just as for velocities, the compact

notation ,)1<,<n, refers to the whole set of positional It is easily checked that such a definition is devoid of ambi-
coordinates. guity in the following important cases$l) The set of grain

External forces and torques may at will be exerted on th&€nter positions, as opposed to grain orientations, define a

grains that are free of kinematic constraints. We shall use thefl2t” Space, on which constant vectors and covectors are

same notations as for velocities, writing down |argeunambiguous. Whenever external efforts are not sensible to
N;-vectors of “external forces”(some of their coordinates Orientational coordinates, as in the case of gravifythe
standing, actually, for torqugsas F°*), \.. At equilib- grain “centers” are their centers of masene may therefore

1 ’ " sus< f'

. . “apply constant forces.”(2) Anticipating Sec. IV, the ap-
rium, they are of course to be balanced by internal force, . imation of small displacements assumes that the mani-

(FT)K/@N# fold might locally be replaced by its flat tangent space.
. The completeN¢-vector of external forces is referred to as
FO+F'=0 (1=sus<Nj). (2.2 the load. Sometimes, it is convenient to deal with param-
etrized sets of loads. When the direction of the load is fixed,
In order to enforce constraints of tyg2.1), some external \yhile its intensity might vary, one hascme-parameter load-
efforts have to be exerted on the bodies concerned. On regng mode In such a situation, all external force components
quiring the power of such efforts to be balanced by that Ofare kept proportional to a single loading param&eand a
internal forces £,")1,n,, One identifies the generalized generalized velocity conjugate @, X, can be identified on
force conjugate to\; as equating the power of the external forces with the product
QA\. \ is some linear combination of the kinematic degrees
Q= — E int 2.3 of freedom (mhsﬂst: and the time derivative of a gener-
! (i,a)el, ()™ a) - ' alized coordinaté\, equal to the same combination of coor-
dinates (m)lsﬂswf- The potential energy is then simply
We just used the power to find generalized forces: this is a
manifestation of theduality between forces and displace- W=—QA. (2.5
ments or velocities, which will be repeatedly exploited in
what follows. TheN;-dimensional vector spacBof external | et ys now illustrate these notions with simple examples,
forces, is, by construction, to be regarded as the dual spacgnich will be repeatedly used in the following. Systers
in the ordinary sense of linear algebra, of tedimensional  andB are packings of disks that are placed on the sites of a
spaceV of kinematic degrees of freedom. _ regular triangular lattice(Later on, we shall allow for a
In general, it should be appreciated that the appropriatgjight polydispersity of the grains. They might move, gain or
mathematical description of configuration space is Rt |ose contacts with their neighbors, and the lattice might be
with its Euclidean structure, but, due to rotational degrees o§jigntly distorteg. SystemA (Fig. 1) is a pile with slope
freedom, arN;-dimensional manifold, on whichx()1<,<n; inclined at 60° with respect to the horizontal direction. Each
is a set of(local) curvilinear coordinatesy and F are, re-  disk is submitted to its own weight, except those of the bot-
spectively, the tangent and cotangent vector space at a givéom row, which collectively set the boundary condition. One
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FIG. 3. Two graing andj joined by a bondh;; is the minimum
distance between their surfaces, measured where a common normal
unit vector isn;; . VectorR;; (R;;) points from the center df(j) to
the point of its surface that is closestjt¢i).

is embedded within a circular wall the radisof which
might change. One controls the generalized force conjugate
to Ay =dR/dt, viz.,

Ql=2i fiu s 2.9

(b)

FIG. 2. (a) SystemB: a hexagonal sample. Arrows depict exter- Where the sum runs over all particleexerting forcesf;,
nal forces applied on peripheral diskb) SystemC: a disordered normally onto the wall.
packing surrounded by a circular wall that might uniformly expand

or shrink, as indicated by the small arrows. B. The structure: a set of bonds

The definitions we introduce here pertain to one specific
configuration of the grains, with the positions and orienta-
tions fixed.

We call “bonds” the pairs of neighboring grains thaay
exert a force on one another. We require this force to be
x;i=(i—1)(1-A;)a, y;=0 (1<i<8), (2.6) concentrated at the point of each grain that is the closest to
the other one, and directed normally to the surfadée
more general case of arbitrary bond forces will be briefly
evoked later.

Note that we neither require the grains that are joined by
a bond to be in contact, nor impose any sign constraint on the
force. We thus define, somewhat arbitrarily at this stage,

vV=—N\(i—1)a, (2.7 such bonds as depicted on Fig. 3, alternatively labeled with
an indexl, 1<I=<N, or with the pair of labels of the two
] ] ] ) grains they join. If bond connects andj, n; or n;; denotes
with a free kinematic parametar,. According to Eq.(2.3),  the unit vector that points fromto j, normally to the sur-
the generalized force conjugateXg is faces of both grains where the distance between thgmis
the smallestR;; is the vector joining the center of grain
8 (origin) to the point on its surface that is closest to grpin
Q= Z F}”)f(i —1)a. (2.9 (extremity). This contact zone might transmitnarmalforce,
=1 along nj;, of magnitudef;; that will be counted positively
when the grains repel each other. Once this set of bonds is
These two slightly different boundary conditiofBCs) are defined, it is referred to as tharucture The set of bonds
respectively abbreviated as BC1 and BC2 in the following.

SystemB [Fig. 2(@)] is a hexagonal sample of the same

material. It is submitted to external forces on the periphery, This latter condition is not essential: the following properties

which mimic hydrostatic pressure. Syst&jFig. 2b)]isa  hold true provided the direction of the force carried by a bond is
disordered collection of disks with a larger polydispersity. Itfixed.

might keep them fixed at regularly spaced positions, impos
ing, say(numbering them as on the figure, and denoting as
the lattice spacing

allowing for a horizontal deformation parametar,. One
may also require them to stay on the horizontal axisO
and satisfy
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defined by intergranular contactl;{=0) will be called the element of C, corresponding to the velocity vector
contact structure (v,)1=p=n,» and let €;)1< < be a set of bond forces stati-
As a consequence of the definition of a structure, the forn?:a”y admissible with the loadFe*, One then has
of internal forceg (FI"');—; -] and torque$(I'™),—;=,] in w JIsu=N:
the system is specified: they linearly depend on bond forces N Ny
fi; as |21 f6V,= 21 F%,,. (2.13
< =

F:m: —Z fijnij Equality (2.13), for an arbitrary(“virtual” ) equilibrium set
7 of internal forces and velocities, stresses theometric
(2.10 meaning of forces and thmechanicaimeaning of velocities.

rint=— i Rij X1y . It is easily established in two steps: first use the force balance
J#i equations on the right-hand side; then transform the sum
) o . o over degrees of freedom into a sum over bonds.
Given the load E})1<,<n,, equilibrium requires, in view As a direct consequence of the theorem, one deduces that
of Egs.(2.10 and(2.2), that the bond forcesf();— <y Sat-  operatorH is in fact the transpose o&: H=G' [as one
isfy equations of the form might check directly, reading the matrix elements in Egs.
\ (2.12 and(2.11)]. This follows from the sequence of equali-
ties
Z,l Hufi=F" (1<u<Np), (2.11)

(floV)=(f|Gv) =(Hf[v)=(Gf|v),

L ; N
defining a linear operatdd: i " 7. Bond forces {))i<i<n  yqjig for arbitrarys (such thatGov =6v) andf (such that

ar%Xtthen said to bestatically admiss_iblewith t_he_ Ioad_ Hf=F<, in which a bracket notation is used for scalar
(FM 1=p=N;- Bond forces that are statically admissible with products. Consequentl$,, the null space o6 is the or-

a load equal to zergin equilibrium without any external thogonal complementary 6, the range ofG, in RM:

action are the elements of a subspa8g of RN, the null

space of operatdd. Its dimension, which we denote hsis Sp=C*. (2.149

the number of linearly independent such self-balanced sets of

internal forces, or, in other words, tltegree of indetermi- Thus, to check that some valué¥, that one might try to
nacy of bond forces the systenalso called thelegree of assign to the relative normal velocities are compatible, it is
hyperstaticity. If not empty, the set of statically admissible sufficient to ensure the orthogonality —ofN-vector

bond forces is an affine space of dimension (6V))1<1<n to all N-vectors of self-balanced bond forces
The relative normal velocity of the graingndj joined by @ spanning subset thergof
a bond is
(6V)1<i=nl Sp- (2.19

5Vij:nij'(Vi_vj+QiXRij_QjXRji)! (212 )
One thus usefrces(elements 0f5;) as cofactors in a set of

with the convention that it is positive when the particles aregeometriccompatibility conditions.
approaching each other. Equatith12 defines a linear op- Recalling thatk (the number of mechanismss the di-
eratorG acting onV into RN. Therangeof G is the subspace mension of the null spacké! of G, one has
C of compatible relative normal velocities, i.e., those .
N-vectors for which one can effectively find values for the N¢=Kk+dim(C).
velocities, relation$2.12 being satisfied. Theull spaceof )
G is the vector spacM of “mechanisms,” also called ASNh=dim(Sy), from Eq.(2.14), one also has
“floppy modes,” i.e., motions that do not alter the lengths N=h-+dim(C)
of the bonds. Its dimension, denotedkas the sequel, is the :
number of independent such motions, or, in other words
regarding the bonds as rigid, tidegree of indeterminacy of
velocities also called thalegree of hypostaticityymposing
the conditionéV;;=0 in all bonds of the structure restricts
the possible values of velocities.;l()lgMgNf to a vector

space of dimensiok. Depending on the type of load and N+k=N;+h. (2.16
boundary conditions, the whole set of grains might keep
some overall rigid body kinematic degrees of freedom. SysAs we will check on examples below, relati¢®.16 holds
temB, for instance, has three independent such motions, likevhatever the choice of the list of bonds between objects,
any solid body in two dimension&D). If ko<d(d+1)/2  although it is of course desirable in practice to define bonds
denotes the number of such particular motions allowed byccording to the interaction law. One may, for example, de-
the boundary conditions, the structure is said to riggd clare a bond to join two grains whenever their surfaces are
when it does not have other mechanisms, i.e., wkrerk,. separated by a minimum distance smaller than some thresh-
An important and useful result, the classitaéorem of old hy>0. The choice of a largen,, thereby increasingy,
virtual power states the following. LetdV,);<;<n be any  will decreasek and/or increase the degree of hyperstatibity

Elimination of the dimension of from those two equalities
yields the following relationship between the degree of hy-
postaticity k, the degree of hyperstaticity, the number of
bondsN, and the number of degrees of freeddip:
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FIG. 4. A set of self-balanced normal forces. The six bonds of
the regular hexagon perimeter carry some normal féreile the
six involving the central disk labeled 1 carry the opposite force.

FIG. 5. A collective mechanism on structure SB1. Arrows rep-
resent disk velocities.

to be devoid of self-balanced sets of forcess 0, and of

Let us remark that the properties we have just dealt Wiﬂ]ﬂechanisms other than rigid body motiotss3. ThusN
in the case of bonds that carry normal forces are very easilyF k=N;+h T

generalized to the case of arbitrary contact forces, at the cost Structure SB1, comprisinty=25 bonds only, still hag

of minor modifications. Relative normal veIQ%iLies and nor- =0. According to Eq(2.16), it should possess ten additional
mﬁ' contact forces are replaced tyvectors, ™" replaces  jngependent mechanisms. Two of them are due to disc 10,
R", equalities(2.13 (with, now, a scalar product within the \hich is now completely free. Four others involve disks 5, 9,
sum in the left-hand sideand (2.14) are still satisfied. In- 12 and 19, which are still free to move in one direction. In
stead of Eq(2.16), one ends up witliN+k=N;+h. Add-  the case of a divalent disk like 5, this is due to the exact
ing friction increase$ and/or decreasds alignment, on the regular lattice, of bonds 4-5 and 5-6. Four
Returning to frictionless systems, the case of spheres dess trivial mechanisms are more collective. One of them is
disks deserves a special treatment: no normal force is able ghown in Fig. 5.
exert any torque, and all rotational degrees of freedom are Two structures SA1 and SA2 are defined, on Fig. 1 in
therefore mechanisms. It is convenient to ignore them altosystemA. SA1 is made of all bonds drawn with continuous
gether. Their numbend(d—1)/2 (n is the number of par- lines, and SA2 contains, in addition, the two bonds drawn
ticles) is then subtracted both fro; and fromk, and Eq.  With dotted lines(19-24 and 32-34 Depending on the
(2.16) still holds. Such granular systems are then analogououndary condition, disks 1 to 8 possess collectively either
to “central-force networks”: networks of freely articulated On€ degree of freedortior BC2) and thenN;=57, or none
bars, or systems of threads tied together, in which only théfor BC1) andN¢=56.

translational degrees of freedom of the nodes matter. One SA2 has 57 bonds. It is devoid of mechanisky=() for
whatever BCs. For BC2, one also has0 and Eq.(2.16

should be aware, however, that the presence of friction rein* .
P holds as an equality between the number of bonds and the

states rotations into the problem.
We now illustrate the notions and properties introduced innumber of degrees of freEdpm' For BC1, one hasl. In-
deed, one may recognize, in the bottom left corner of the

this section with examples of structures defined in systéms pile, with disks 1, 2, 3, 9 and 10, part of the hyperstatic

B, a.”dc’ \ghoring, as explained Jl.JSt above, disk rotations. pattern of Fig. 4. With BC1, one need not care about equi-
First consider systerB. Three different structures are ap- librium of disks 1, 2, and 3 which are perfectly fixed. A

parent on Fig. @). The first one, which we denote as SB1, is ystem of self-balanced bond forces is thus found on attrib-

the set of bonds that are drawn as thick lines; the secontiting a common value to the normal forces in bonds 1-9,
SB2, contains all bonds of SB1, plus those that are drawg_10 and 10-3, and the opposite value to the normal forces
with thin continuous lines on the figure; and, finally, the third j, honds 2-9 and 2-10. In the case of BC2, these forces do
structure, SB3, comprises all possible bonds between nearggbt palance, since the equilibrium equation for the collective
neighbors in the system, i.e., all those of SB2 plus the dottedegree of freedom of the bottom rda combination of Egs.
lines. Ignoring rotations, one hag=2n=38. (2.89) and(2.10] is not satisfied. As to SA1, it has the same
Structure SB3 is a set of rigid triangles sharing commomroperties as SA2, with two additional mechanisfosllec-
edges with their neighbors. It is devoid of mechanisms, extive ones like that of Fig. 6
cept the three overall rigid body degrees of freedom of the Consider now structure SC that is shown, in syst&nn
system. Thuk=3. N=42 bonds are present. In view of Eq. Fig. 2(b), with the lines connecting disk centers or joining
(2.16, one hash=7. One can exhibit seven linearly inde- disks to the wall that defin&l=70 bonds. Taking into ac-
pendent systems of self-balanced normal forces, as followsount the degree of freedom of the wall, one MNs=2n
The small structure, with 12 bonds, involving seven disks,+1=75. One may showh=0. Thus one hak=5. Two
depicted on Fig. 4, allows definition of one such set ofdisks (10 and 14 are entirely free; hence four mechanisms.
forces. Noting that seven such patterns are present in SBBhe missing one is a global rotation, as a solid body, of the
(centered on discs 5, 6, 9, 10, 11, 14, andl 1% right count  set of all particles around the center of the circular container,
is reached. the wall remaining immobile. Such a motion would not be
Structure SB2 is made di=35 bonds. It can be shown possible if the same boundary condition was used with an-
(on studying the properties of the corresponding maB)x  other container shape.
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C. The problem: The structure and the load (denoted as PAL in the followinglefined with BC2 and the

Once a list of bonds is chosen, thus defining the structuré?aoa
we shall refer to the situation of the structure submitted to a

ext__ _ H
given load as “the problem.” Solving the problem would Fm=-pe (9=i=<30),

mean finding the motion or equilibrium state of the system (218
(determining, e.g., new equilibrium positions and intergranu- Q.= 294p
lar forces, once the load has been applied, from an initial V53"

state of rest with no external force. We are not, of course,
able to do that at this stage, since no contact law relating the’here p is the weight of one disk ane, is the vertical
forces to the relative motion of neighboring particles hasupward unit vector, is isostatic, although two mechanisms
been introduced. The only information available is that theare present.
internal forces are required to belong to some vector space Analogously, structure SB1, along with the load shown in
that is known once the structure is defined, and to be exerteldig. 2, defines an isostatic problem PB1 in spite of khe
on given points on the grain surfaces. =10 mechanisms. In particular, the load direct{pnovided

It is said thatthe load is supportedy the structure if its  disks sit right on the regular lattice sijds exactly orthogo-
application leads to an equilibrium state in which internalnal to the velocity vector represented in Fig. 5. Structure SC,
forces, carried by the bonds of the structure, balance theubmitted to the load
external ones. We can state a necessary condition for the

load to be supported: it must be possible to find statically FPX'=0 (1<i=<37),
admissible intergranular forces. Necessarily,Xhevector of 0 (2.19
external forces must lie in the range of opera®, i.e., it Q:1=Qyq,

must be orthogonal to the null spakkof G:
where a prescribed vaIL@‘f is imposed on the generalized

(F)a=p=nyL M. (217 force Q, defined in Eq(2.9), yields an isostatic problem.
Isostaticstructures on the other hand, are such that all
This simply means that if the load is to be supported, it musproblems are isostatic, whatever the choice of the load. More
not set the mechanisms into motion. Such a load is said to bgrecisely, one requires all loads orthogonal to the overall
supportable All supportable loads are not always supported.rigid body degrees of freedom to be supportable with a
By definition, thebackboneof a structure is the set of unique determination of internal forces. Equivalently, both
bonds |, such that a list of statically admissible internal conditionsh=0 andk=k, are to be satisfied. Both the de-
forces )<<y exists withf, #0. In the following we shall  gree of hyperstaticity and the degree of hypostaticéy-

also refer to the set of grains reached by such bonds as “thguding rigid body motions should be equal to zero. This
backbone.” entails the well-known condition

In general, a full mechanical characterization of the equi-
librium properties of the system requires some constitutive

law in the contacts. However, there are interesting situationgtatin that the number of equilibrium equatio K.) is
in which (1) condition(2.17) being fulfilled, the load is sup- equalgto o i ot unkr?ownw quationé; ¢ ko)

Fortable; and(2) i{ itd is suppo(;tid, ;‘hen all _intergrgnulq;b Equality (2.20 is a necessary condition for the structure
prcest;\]re urg|quey de_ztt_ermlrgjef_ yt ete(t?]_uatlor;? o €qullidty pe jsostatic, not a sufficient one. For example, in the struc-
fium. 1hese two condilions define gsbsialic problem ure defined by the addition of the bond joining disks 19 and

Further restrictions on internal forces are often enforce 4 to SAL with the first boundary conditigiBC1), one has
in the form of inequalities. The definition of a supportable ko=0, N=N;=56, while h=k=1. Structure SA2, with

load is then modified accordingly, imposing additional con- - ; L P ;
e . ; ) . BC2, is isostatic. SB2, witlN;=38 andk,=3, is isostatic.
ditions to be satisfied simultaneously with £8.17). Their As to SC, it would be isostatic upon removal of grains 10

consequences will be discussed in Secs. Il and VII. and 14, only if the global rotation of the set of grains with
respect to the wall were ignored. Of course, all those struc-
D. Isostaticity: Various definitions tures, as we are dealing with disks, are only isostatic if rota-

In Sec. VI we shall see that equilibrium configurations of ionS are ignored. Only problems with no external torque

assemblies of rigid frictionless grains interacting via contac€*€rted on the grains are isostatic. This should be remem-
forces only are generally such that the problem is isostatic?€r€d on comparing andk with and without friction in such
Here, we first insist on the difference betweenisostatic ~ SYStems.

problem as defined just above, and Bostatic structurgto As we shall see, isostatic problems, rather than isostatic
be defined below. Once conditidB.17) is satisfied, the set Structures, naturally occur in some model granular systems.
of possible bond forces is an affine space of dimension The distinction is relevant, for it accounts for disconnected

One has an isostatic problem if both conditiasl?) and ~ ©' “dangli_ng_”_ parts in (_:Iisordered structures like SC, and for
h=0 are fulfiled. Some mechanisms might still exist in thethe peculiarities of lattice models. Moreover, some systems,
structure k#0), provided they are orthogonal to the load
direction.

Structure SA1(Fig. 1), with disks exactly centered on the 3The load, in this case, is supportable if and only ip42Q,3
sites of a regular triangular lattice, is such that the problems74p.

N=N;—ko, (2.20
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as we shall see, can also spontaneously select a nonkigid ¢lict the grain trajectories once they are submitted to external
>Kp) equilibrium configuration. forces, for all dynamical aspects are still unknown and the
characterization of equilibrium might even be incomplete.
Our aim is to deduce as much as possible about the global
E. Generic versus geometric properties properties of the granular assembly from as little information

The distinction between isostatic problems and isostati@S Possible about the detailed mechanical laws of the con-
structures should not be confused with another one: that bdacts, in order to stress the importance of geometrical as-
tween geometricand generic isostaticity. We have used a Pects. Thus we first present the simplest case of rigid, fric-
geometricdefinition of a structure, as associated with onetionless, and cohesionless grains, in which contacts simply
particular position of the system in configuration space, andehave as struts. Then we introduce and briefly discuss other
accordingly the definition we gave is that of geometric isos_poss_ll_ale laws in which unilaterality or_r|g|d|ty constraints are
taticity. A topologicalone can be introduced which, irrespec- modified or relaxed. Most of those frictionless systems pos-
tive of particle positions, is sensitive only to the connectivity S€SS & potential energy that is stationary at equilibrium states
of the network of bonds. In the case of spheres or disksand then reaches a minimum if they are stable. Throughout
when rotations can be ignored, this amounts to regarding th&is section, it is assumed that a one-parameter loading mode
structure as a graph: a set of edgiasnds joining at vertices has bee_n defined for varying particle positions and orlent_a-
(graing. OperatorG, spacesS, andM, and their dimensions tions, with constant external forces, .and fchat the potential
h andk smoothly depend on the coordinates of the grains, vi€nergy of external forcesy, can be written in the forms of
vectorsn;; and R;;. However, the rank of a parameter- Egs.(2.4) and(2.5).
dependent matrix stays at its maximum except for special
values of the parameters. Equivalently, the dimension of the A. Rigid frictionless grains, no cohesion
null space is genericaIITy equal to its minimum value. Apply- | this case, the contact law takes the form of the so-
ing this to bpthG andG’, one may define the generic degree cgjjed Signorini condition:
of indeterminacy of velocitieswith due account to thé

rigid body degrees of freedonk and the generic degree of fij=0 if h;>0,
indeterminacy of force$ as the respective generimini- (3.1
mum) dimensions of their null spaces. This allows one to fij=0 if h;=0.

define a suitable isostaticity notion for topological structures: . ,
a generically isostatic structurés one for which both num- It should be noted that this law does not express a functional

bersh andk—k, are equal to zero. dependence df; onh, . Let us study the variations &Y near
It follows from the definitions that a geometrically isos- €duilibrium states. First, consider such a state in which some

tatic structure, once regarded as a topological structure, @on-negative contact forcef§' in closed contactsh(=0)

always a generically isostatic one, but that the reciprocaPalance the external loaQ. Let us apply the theorem of

property is not true. Referen¢@0] gives a counterexample Virtual power with statically admissible force séf ), <y,

for a system of diskglike systemsA andB, equivalent to a and arbitrary particle velocities, corresponding to relative

network of articulated bayon the regular triangular lattice. normal velocitiessV,= —dh,/dt and a value\=dA/dt for

In specific configurationglike that of a regular triangular the kinematic parameter conjugate@o For anyl such that

lattice), one might exceptionally have=k—k,>0 on ge- f{>0, the Signorini condition requires that=0 and one

nerically isostatic structures. must havesV,<0 to comply with the impenetrability con-

In two dimensions, there exist some powerful algorithmsstraints. Then, from

[21,22 to evaluate the generic degrees of force and velocity

indeterminacy in central-force networksr systems of fric- d_W_ _ %_ —QA==2 frsv

tionless disks Such computational methods deal only with gt - Qgr == o ek

connectivity properties; they do not manipulate floating-

point numbers and are therefore devoid of numerical roundit follows that any motion that does not lead to grain inter-

off errors. They have been successfully applied to systems gfenetration can only, to first order irfany parameter on the

up to 16 nodes. However they are, of course, unable tolrajectory in configuration spagencreasethe potential en-

compute position-dependent quantities like force values. ~ €rgy. This non-negative first-order variation might be equal
to zero if §V,=0 for any active contadt, i.e., if a mecha-

1. CONTACT LAW AND POTENTIAL MINIMIZATION nism exists on the backbone of the contact structure.
Whether the equilibrium state corresponds to a minimum of

So far, the only restriction on intergranular forces was thaty depends then on the sign of second- or higher-order varia-

they should be normal to the grain surfaéds.this section  tions. If the backbone of the contact structure is rigid, thén

we consider some more specific cases of frictionless grainss necessarily minimized at equilibrium.

in which some “contact law,” relating normal forces to rela-  Conversely, let us assume that a configuration of the

tive positions, is known. This provides some limited addi-grains has been reached that locally minimigésinder the

tional information, which is not sufficient in general to pre- Constraintgqlzo_ There must then exist some non-negative
Lagrange multipliers f such that, for any coordinate, ,

“In fact, all the properties hold true provided ttiieection of each — i A)=— E f (9_h' (3.2
. e (Q 1= -
intergranular force is imposed. X T Xy
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Only for such indices thath,=0 do thef, take nonvanish- C. Systems with a smooth interaction potential

ing values. The partial derivative in the right-hand side of The model of perfectly rigid grains is physically reason-
Eq.(3.2) is the opposite of matrix eleme® ., while, from g6 \when contact deformationd €0) are negligible in
Eq. (2.4), that of the left-hand side is the external force con-comparison with any other relevant length in the problem.
jugate tox, . Thus, we have just written that parametéfs \yhen this is no longer the case, or when one wishes to

are in fact equilibrium contact forces satisfying E8.1),  model sound propagation, it is appropriate to deal with con-
and reaction forces stem from geometrical constraints. tact laws that involve elastic deformations, e.g.

We now introduce a few other related contact laws and
mechanical models. 0 if h;;>0,

f” K|J|h|]|m if h”$0, 3.6

B. Systems with tensile or bilateral forces

in which Kj; is a stiffness constant that depends on material
properties and on the geometry of contgagt The exponent

is m=3/2 (Hertz law) for smooth surfaces in 3D, and other
values might model roughness and the presence of conical
asperitied24,25|.

f;=0 if h;<o0, Such contact forces derive from an elastic potential en-

(33) ergy:

Networks of rigid strings or cables are analogous to fric-
tionless sphere@gnoring their rotationsif the sign of forces
is reversed and if the distance constrdif® 0 is replaced by
h,=<0. The Signorini conditior{3.1) becomes

f|]$0 if hij=0, N K
I= i — m+1
and the whole treament of the preceding subsection straight- W ;W(h') with w(hy) m+1|h'| - @37
forwardly applies.

In the case of nonspherical grains, an analogous systetikewise, rigid cables as introduced in Sec. Il B could be
supporting tensile forces is an idealized chain, in whichreplaced by elastic ones. That stable equilibrium states cor-
“grain”—chain link—perimeters are free to cross. Pairs of respond to minima, in the absence of friction, of the total
neighboring links(interpenetrating “grainsy exert a force potential energy
on one another, opposing their separation, when their inter- ot |
section is reduced to a contact point. Wl=We+ W (3.8

A bilateral contact law, . . .
[the sum of the elastic potenti&B.7) and the potential en-

f =0 if h.#0 ergy of external force€.4) or (2.5] is an extremely familiar

. e property. The Signorini condition might physically be re-
(34 garded as the limit of the interaction law expressed by Eq.

(3.6) when the stiffness constants become very large, or,

. o ) ) ] equivalently, when the level of intergranular forces ap-

might model rigid cohesive grains that “stick” to one an- proaches zero. Alternatively, it is mathematically possible to

other. The sticking force might be limited by an inequality: jntroduce a regularized contact law of the fotB16) as an

approximation, when contacts are stiff enough, of the ideal

fijunknown if h;=0,

fij=0 if h;#0, impenetrability constraint. Such a point of view is adopted in
(3.5 optimization theory: the procedure known as penalization of
fij=—fy if h;=0. the constraints amounts to searching for unconstrained

minima of W+ W?¢', instead of minimizingW subject to im-
When one simply uses the for{8.4), assuming that the pairs penetrability constraints.
that are stuck in contact will not come apart, the conclusions Tensile contact forces of limited intensity, as in contact
of Sec. Il A still hold, if unilateral conditions on relative law (3.5, might result from some attractive interaction of
velocities and displacements are replaced by bilateral onefiite, but small, range, as depicted in Fig. 6. It is interesting
and if all sign constraints on contact forces are removedto note that the addition of an attractive tail has turned the
Equilibrium configurations are characterized by stationaritypotentialw(h) into a nonconvex function of interstitial thick-
of the potential energyV. Minimization of W ensures stabil- nessh. At the inflection pointA the attractive force reaches
ity. A sufficient but not necessary condition for minimization its maximumf,. If one pulls with a growing force on two
of Wis the rigidity of the backbone of the contact structure.grains in contact in order to separate them, an instability, in
Reciprocally, statically admissible normal contact forceswhich the contact suddenly breaks open, is reached as the
naturally appear as Lagrange multipliers associated with bipulling force reaches the valdg . When the corresponding
lateral constraintsh;=0 at a potential energy minimum. intergranular distanct, is so small that it is negligible in
However, contact law3.5) does not lend itself to a potential comparison to all other relevant lengths in the problem, one
energy formulation. might then replace the smooth attractive potential by contact
Tensegritied 23] (with rigid elements are by definition law (3.5), with fo=f,. On doing so, however, one loses the
mixed networks of strutgsatisfying condition Eq(3.1)] or  possibility to exploit minimization properties.
bars (bilatera) on the one hand, and cablgsatisfying Eq. We shall see that the potential minimization properties
(3.3)], on the other hand. Their potential energy has the sambave important consequences in terms of the possible
properties as stated above. unigueness of the equilibrium state under a prescribed load,
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L L B grain displacement&@nd rotationg regarded as small quan-
tities. Vectorsn;;, R;;, R;; are regarded as constant, equal to
i P ng. RY, R} . As they appear as cofactors of the displace-
1+ _ ments, taking their variations into account would introduce
L i second-order terms. All changes of the structure geometry
- . are ignored. Space%S and operator§,G' are assumed to
- . be the same in the actual as in the reference configurations.
- ] Displacements are now endowed with the same linear alge-
0.5 - 7] braic structures as velocitie& operates on displacements,
yielding relative normal displacemendsl, , the compatibil-
ity condition for relative normal displacements is the or-
thogonality to the space of self-balanced internal foggs
theorem of virtual work can be stated instead of the theorem
of virtual power, etc.

Within the framework of the ASD, the specificity of me-
chanical problems disappears: as the effect of the displace-
ments of the graingvariations of the coordinatgeon the
positions(coordinates themselves is ignored, one can find
analogies with various other local properties of a list of fixed

h/a points, nodes, or lattice sites. Forces now appear as unknown
vectors carried by fixed directions, and the sum of incoming

FIG. 6. Interaction potential as a function of interstitial thick- forces on a node has to vanish. Part V introduces the analogy
nessh, with an attractive tail. The curve has an inflexion poigt  with scalar transport on a fixed network.
corresponding to the maximum attraction foKegual to the slope

of the dotted ling B. Lattice models

[}

W/W

and, eventually, as to the possible origins of macroscopic R€gular packings of monodisperse spheres in@iisks

plastic dissipation. But, first, we have to extend the properi? 2D) on fcc or hexagonal compadriangular in 2D lat-

ties we have stated for velocitiger infinitesimal displace- tices are simple systems that are often studied theoretically,
ments to small displacements around a given reference con€XPerimentally[26,27, and numerically 28-30,15,9,31,16,
figuration. 17,32,33. Because trully monod_lsperse sys.tems do not ex!st,
and because of possible elastic deformations of the grains,
one cannot expect such lattices to remain perfectly regular
IV. APPROXIMATION OF SMALL DISPLACEMENTS and undisturbed. However, as lattice perturbations will be
A. Definition small, it is a common practid®8,29,15,9,16,1Jto resort to

We wish h h introduced i hthe ASD, with a perfect lattice as the reference configuration
e wish to use the concepts we have Introduced In the,, ., \\hich displacements and strains are evaluated.

preceding sept!ons while aIIo_Wing.some motion ,Of the grains, Consider, e.g., the case of slightly polydisperse disks on a
of small but finite extent, which might alter the list of closed triangular lattice, as in systerdsandB. A perfect lattice can
mtergr_anular contacts. Consequently, we mtroduce_ the 3%e chosen as the reference state, in which the spacing be-
sumption that displacements from a reference conflguratmﬂNeen neighbouring sites is the lowest upper boaraf the

are small er_10ugh to be regarded as infinitesim.al qu"’mtitie%iameter distribution. Diameters are assumed to be distrib-
This approximation of small displacementaSD) is a cru- uted betweerm(1— ) anda, with a small paramete<1.
cial step that is very often taken in solid state mechanics:The diameter of disk is thu's

Indeed, it is indispensable if one wishes to deal with linear
problems: adding up two displacement fields, for instance, in a=a(l—da), (4.1
continuum mechanics, is otherwise a meaningless operation.
In the case of granular systems, it will also lead to a linear-
ization of the problems, for the curvature of configuration s, being a random number, drawn independently for gach
spaces will be ignored. Its range of validity has to be asbetween 0 and 1. When a certain number of intergranular
sesseda posteriorj but is of course presumably larger in contacts is created, as is often necessefrySec. Il)) in order
dense systems, where contacts might open and close witb sustain some external forces, the lattice will be slightly
only tiny changes of the relative positions of neighboringdistorted, with displacements of order The ASD amounts
grains. to dealing with all relevant quantities to leading orderain
Specifically, we assume the coordinates of the grains tén all possible contacts, the normal unit vector is kept paral-
stay close to reference values. Quantities pertaining to thiel to one of the three directions of dense lines in the trian-
reference configuration will be labeled with a superscript Ogular lattice. It is convenient to work with a fixed structure
It is often convenient, then, to work with a fixed structure— S, that comprises all bonds between nearest neighbors on the
the list of contacts that might close, and transmit a force, igattice. If grains are required to touch to exert a force on one
known a priori. another, forces, in a state of equilibrium under a supported
Interstitial thicknesses, are written ash,=h’—éu,, load, will be carried by some contact structure, the bonds of
with a relative normal displacementy, that islinear in the  which form a subset 08,.
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One might then regard problem PAL, in syst&mas de-  to an equilibrium configuration in which the contact structure
fined onS,. Once the random radii were fixed, we found, supports the load. We also regard the geometric definition of
within the ASD, an equilibrium configuration for problem particles as incompletely known, thereby introducing ran-
PAL, satisfying the Signorini conditio(8.1), in which the  domness: such parameters as grain diameters or radii of cur-
contact structure was SA1. Similarly, once the values of thejature are to be regarded as distributed over small intervals.
radii were known in SySter’B, SB1 was found, within the Then one can state the fo”owing remarkable prope‘wyh
ASD, as the contact structure corresponding to a solution ghyohapility 1, the problem, posed on the contact structure, is
problem PB1, posed on SB3S,. Within the ASD, all dis-  jgostatic
placements and deformations are proportionakfand the Such an isostaticity property wésiore or less explicitly
problem is sensitive only to parameters)o<i<n, apart reported in Ref[20] and articles cited therein, in the case of
from a scale factor for displacements. . triangular lattice systems, within the ASD, with grains satis-

Suc_h is not the case, of course, W'th_OUt the ASD, if onefying the Signorini condition(3.1). Isostaticity was also
takes into account the rotations of unit vectars of the stated in Refd.30,15,9,17, which deal with the same model.
bonds due to the deformation of the lattice. Moukarzel[33,34] then argued that systems of frictionless

grains interacting by repulsive elastic contact forces should
V. ANALOGY WITH SCALAR PROBLEMS become isostatic in the limit of large contact stiffnesses. UI-

We briefly recall the analogy between the mechanicafiMately, Tkachenko and Witte85] derived an isostaticity
problems we have been discussing, within the approximatioR"OPerty for disordered systems of rigid frictionless spheres
of small displacements, and that of current transport on & arbitrary dimension, each grain being submitted to an ex-

resistor network. Such an analogy was presented, e.g., iernal force(e.g., to its weight whatever the sign of contact

Ref. [20]. It is useful because some properties are more im{OrCeS:

mediately intuitive in scalar models, and because statistical H€re, we will establish the isostaticity of tigoblem(h
models (percolation, directed percolation, minimum paths, = 0) rather than the isostaticity of the structure<0 and
etc) have been more extensively studied and are more fami=Ko), in quite general situations. As we shall see in Sec.
iar in the scalar case. The term “scalar” refers to the trans-V!ll. full rigidity (' k=ko) in addition to absence of hypersta-
port of a scalar quantitycurren) as opposed to a vectorial ticity (h=0) is a less general property, géometric as op-
one (force) in mechanical problems. Currents entering oneP0sed tatopological origin.

node by the conducting bonds of the network should balance

the external current fed into that node, just as bond forces B. General arguments

balance_ ext_ernal efforts. The analog of_the displacement VEC- The arguments we give below to establish the isostaticity
tor (which, in the general case, also involves angular disproperty emphasize the peculiarity of equilibrium states, in
placementsis the(scalaj potential of a node, and the dual- \yhich sufficiently many intergranular contacts should be cre-
ity between forces and displacements translates into thgieq in order to resist the externally imposed forces. Thus
duality between currents and potentials. All the developych states belong to a subset of configuration space of van-
ments of Sec. Il, adapted within the ASD to displacement§shing measure. Grains have been brought to rest by some
instead of velocities, are valid for resistor networks, is  ynspecified dynamic dissipative process. Our derivation ad-
the potential drop in bond.TOne may define spaces pjttedly retains a heuristic flavor, for a definitive proof
F.,C,V,So, M operatorsG andG ', state the theorem of vir- \yoyld require much more specific mathematical assump-
tual power, etc. The analog of a system of self-balanced bongy,s. Readers who demand more mathematical rigor will
forces is a set of currents satisfying the conservation lavyaye realized that arguments presented by other avjté®+s
without any external source, i.e., a combination of curreniys) are not without reproach either, and may refer to the next
loops. One may define as many linearly independent eleyaragraph. There, within the AS@nd thus at the expense of
ments ofM as there are dlsconnecteq parts in the networkgqditional assumptions about the magnitude of displace-
The number of degrees of freedds} is now equal to the  ments from a reference configuratiosostaticity is rigor-
number of nodes. It is related to the number of boNdshe ously deduced.

number of independent loops and the number of discon-  Tg ease the presentation of our arguments, let us intro-
nected parts (1 for a connex netwpkby the scalar version gy ce a few compact notations. We denoteqa,};lging a set

of Eq. (2.16: of coordinates in configuration spa€eThe geometry of the
grains depends on some random parametgees, shapes,
etc), collectively denoted ag. { might be regarded as a
vector with a large number, sgy, of components? e RP.
The evolution of the granular system can be modeled as a
function ® that maps an initial configuratiorq()(log)ing to
the actual equilibrium configuratiorg() ;<< . The motion
A. Statement and context of the grains from qi)g‘Qing to (Gj)1<i<, Might, e.g., be

We consider an assembly of rigid, frictionless grains thatdescribed by a differential equatio® then expresses the

exert only normal contact forces on one another. Thoselependence on initial conditionsb also depends or,

forces might, however, be attractive or repulsive. We assumehich has the role of a set of parameters. To proceed, on has
that the system, submitted to a prescribed load, has evolved assume that this dependence is sufficiently reguaé

N+k:Nf+h,

a simple topological identity valid for an arbitrary graph.

VI. ISOSTATICITY PROPERTY
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X RP— €& is generally a smooth function. Although the evo- ability 1, the contact structure in the equilibrium configura-
lution of a pack of grains is expected to exhibit a high sen-tion cannot be hyperstatic and the degree of indeterminacy of
sitivity to parameters and initial conditions, it is dissipative forcesh is equal to zero.

and will bring the system very close to equilibrium in a finite  The above derivation relies on rather specific assumptions
time. Chaotic trajectories deviate fast from one another, buabout mappingb. One should be aware, however, that we
the evolution in a finite time is expected to be expressed byre free to choose any initial configuration that does not vio-
a smooth mapping, which also depends continuously on pdate impenetrability conditions. The assumptions we have re-
rameters{, except perhaps for peculiar values that corre-lied upon are quite natural when the initial and final equilib-
spond to bifurcations between different sets of final states orium configurations are close to each other. Essentially, one
“attraction basins.” If, for instance, one reproduces the saméias then to accept the idea that the fine geometrical details of
dynamical evolution from the initial to the final configura- grain surfaces, in the vicinity of their contact points at equi-
tions and gradually changes the size of one particle, onBbrium, do not significantly influence their trajectories ex-
expects, physically, the final state to change only graduallycept in the very final stage. Thus they can be regarded as
until for some value of the geometrical change some rearrandomly chosen during this ultimate stage of the approach
rangement of finite extent will suddenly take place. We asto equilibrium, as though the system “realized” then what
sume such bifurcations occur only for isolated values of theheir actual values are. In the next subsection it is assumed
parameters, such that around the acttialRP, there exists that the “initial” and final states are so close that the motion
generically a neighborhoof within which the parameter between them might correctly be described within the ASD.
set might vary without creating any discontinuity or closing Other derivations might resort to fictitious construction pro-
any additional contact in the final configuratioqixlging cesses of the granular assembly, in whiglis replaced by a
c&. simpler function. One might consider, e.g., sequentially

Consider now the sett of intergranular contacts corre- bringing the grains, one by one, to their equilibrium position,
sponding to this configuratiotthe contact structure, as de- thus gradually enlarging the list of contacts. If, at any stage
fined in Sec. IJ. As { changes withir{}, maintained contacts N the processh is strictly positive, some of the contacts
form some nonempty subset bf which is sufficient to carry cannot be maintained on slightly altering some of the geo-

the load. metrical details of grain surfaces near the most recently cre-
If £ Q varies along a curve parametrized byso does ~at€d contacts. . _
(G)1=i=n, in € via the mappingD. If a contact {,}) e L is The equilibrium state, as we have just concluded, is de-

void of hyperstaticity i=0). What about its possible
mechanisms? We have assumed that it can support the load.
dh;, Itis te_mpting to _conclude that mechanisms do not exist in the
m:o. (6.1 generic case, since the orthogonality condit{@rl?) would

have to be maintained as the shape of the grains is altered.
However, one has to keep in mind that equilibrium configu-
diust to the ch . : It tory i rations are very peculiar ones, and we shall see that the ex-
adjust to the change in grain geometfylf parameten is istence of mechanisms in the equilibrium state depends in

formally re_garded asime, relative nor_malyelomhesé‘vij_: general on the sign of intergranular forces and on the shape
—dh;; /duin all contacts that are maintained are required to

balance the effect of the change &fto ensure that equality of the grains.

(6.1) is still satisfied. Increasing, if needed, the numpeaf

{ components, it is natural to assume that such conditions on C. Alternative derivation within the ASD: The special case
relative velocities are independent from contact to contact, of lattice models

for the required value 0fV;; depends only on those geomet-
ric parameters that govern the shape of graiaadj in the
immediate vicinity of their contact point. Therefore, for a list
L of N contacts to be maintained for arbitrafye (), any
N-vector (6V,);<;=ne RN of possible relative normal ve-
locities in the contacts of must be compatible. In view of
condition (2.15), only such contact structurdsthat are de-
void of self-balanced sets of internal forcés., such that
h=0 or §,={0}) can be maintained. If, exceptionally, the
equilibrium configuration qi)lging admits one nonvanish-

ing element §,)1<,<n Of Sy, then, as the condition

to be maintained in this motion, one must have

This means that the coordinates of grainandj have to

A slightly different point of view may be adopted in the
framework of the ASD: within the approximation, the prob-
lem being replaced by a simplified one, the isostaticity prop-
erty can be established in a rigorous way. Also, the analogy
with the scalar problem might make the result more imme-
diately intuitive. Let us assume the ASD to be valid with a
reference configuration in which all contacts are slightly
open: a list of bonds is defined, with strictly positive values
of interstitial thicknesseb?. hf} , the distance separating the
surfaces of graing andj, is to be regarded as a random
number that depends on fine details of their geomehﬂy.
values for the different bonds are independent and continu-

E 1,8V,=0 ously distributed. Once the system has been brought to an
1<T=N equilibrium configuration, forces are carried by contacts, i.e.,
bonds| for which h;=0. If (y))1<<n IS a set of self-
cannot be ensured for arbitrary\(|);<,=ne RY and grains  balanced forces carried by those contacts, the theorem of
cannot interpenetrate, one at least of the contastsh that  virtual work, applied with such bond forces on the one hand,
v # 0 will open (§V,<0) upon slightly tampering with geo- and with the displacements from the reference to the equilib-
metric parameterg. We have thus shown that, with prob- rium configurations on the other hand yields
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2 h(l),i_,z hio,i+1:0'

=2 =2

3 which is true with probability zero for continuously distrib-
uted independent random numbeh%. Within the lattice
FIG. 7. Three bonds forming a loop in the resistor network. AModel with random diameters, as introduced in Sec. IVB,

current might circulate as indicated by the arrows. one has

N N
21 w(hf’—hl)=§1 yh=0. (6.2 h? =g(5i+ 5)a. 6.3

Thus a certain linear combination of the random distai¢es
has to be equal to zero. Coefficientg); <<y are fixed once
the reference configuration is known. Moreover, via an itera-
tive dilution process, they can be chosen among a finite set, 81=§(0p+ 83+ 84+ S5+ 86+ 57),
as we now show. Assume a set of self-balanced forces

(7)1=1=n to exist, and define the sB of bondsl for which  \yhich, once again, is satisfied with probability zero.

7#0. Then, as long as it is possible, proceed to successive |t js |ess obvious, however, that the disorder on the radii
“dilutions™ of this set, definingB,, B,, etc., requesting that  of gisks that remain exactly circuléor of perfect spheres in
there is one bond less By than inBy, but thatitis still  3p) js sufficient, because of the induced disorderhgrs as
possible to find self-balanced forces localized on the bondg, Eq. (6.3), to forbid the existence ofiny set of self-

of the reduced set. The fin&, , that can no longer be di- pajanced contact forces. The problem is that, because of Eq.
luted, will be such that the values af, will be uniquely  (6.3), interstitial thicknesses are no longer independent. On
determined for eache By, Up to a common factor, which is transforming Eq(6.2) into a relation betwee®;’s, one gets

fixed if one imposes the condition that the largests equal

to 1. In this way, one thus defineseducible sets of self-

balanced forcesthat are put in one-to-one correspondence E (2 Yij
with certain substructures of the whole contact structure. In a P
finite system, one thus has a finite number of such irreducible

sets of bond forces. If a system of self-balanced forces can behich might well be satisfied it .;y;;=0 for eachi. This
carried by the contacts that are closed, then(B@®) has to latter condition has no chance to be obeyed in a disordered
be satisfied with one of the irreducible systems of self-system, but may be achieved on a regular lattice. This does
balanced forces, an occurrence of probability zero. not occur, however, with nearly monodisperse disks on a

The scalar analog of this derivation is especially straightregular triangular lattice in 2D, because three independent
forward. To the requirement that only particles in contactconditions per disk are to be satisfied, and the number of
exert a force on one another corresponds the condition thateontacts, at most three times the number of disks on this
bond between sites andb on the resistor network can carry Six-coordinated lattice, has to be strictly smaller, because hy-
a current only when the potential differencg— vy, is equal  perstatic configurations like that of Fig. 4 cannot exist.
to a prescribed value?, . Parameters?, are to be regarded ~ The situation is different for the analogous 3D model,
as random, chosen according to a continuous probability disdefined with slightly polydisperse spheres on the sites of a
tribution and independent from bond to bond. Then, the apfcc lattice. Each sphere has 12 nearest neighbors, and one
pearance, once some current is injected at one node of thBay find hyperstatic structures in which contacts will be
resistor network and extracted at another, of a loop ofmaintained with polydisperse spheres. A simple example of
current-carrying bonds is to be discarded as an occurrence §fch a structure can be found with 24 spheres and 64
zero probability. (One may, of course, define irreducible contacts. Although a small amount of polydispersity elimi-
loops, as the ones that carry a unit current and do not contaff@tes hyperstaticity in 2D triangular lattices of disks, it does
strictly smaller subloops.Assume three bonds, making a not do so in fcc lattices of spheres, provided the grains, in
loop between three sites, say-2—3—1, to carry a non- SPite of the distribution of radii, remain perfectly spherical. If
vanishing currentFig. 7). This implies an exact relation of the shape of the grains is also affected by the slight geomet-
the form =v9,+v3,+v3,=0, which has no chance to be ¢ disorder, then(with the notations of Fig. Bone has
satisfied. ’ ’ ’ [Rijll#]IRik|| for j #k, interstitial thicknesseb;; become in-

Let us consider now, as an example, returning to granulaféPendent in all bonds of the lattice, and hyperstaticity is
systems, the small hyperstatic structure of Fig. 4, and assunferidden. (Within the ASD, it is consistent to ignore the
that the seven grains have been brought from the referendgtation of unit vectorsn; due to small departures from
configuration of the triangular lattice model defined in Sec SPhericity)

IV B, in which all interstices are oper‘nﬁ>0), to an equi-

librium configuration in which the 12 bonds are closed con-

tacts, withh;;=0. Labeling the grains as on the figure, Eq. °The interested reader can obtain the list of sphere positions from
(6.2 reads the author.

One obtains a relationship betweéys,

5i:01
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D. Consequences and remarks number of contactdl that carry a force, involving the num-
Once the list of active contacts in an equilibrium state isP€rNr of degrees of freedom of the particles belonging to the

known, isostaticity of the problem enables a purely geometPackbone of the force-carrying structum<N;—Kko. Ne-

ric determination of the forces, independently of material9€cting the effect of boundary conditions on the countef
properties. As an example, syst&@was brought into equi- " Iarge granular systems, one gets an upper bound on the
librium under the load defined by E®.19, with conditions ~ ¢oordination numbee=2N/n:

(3.1). As soon as the list of contacdtstructure SCis known,

the set of_ normal contact forces is_ e_ntirely_ qutermi_ned. _ 2d for spheres
This gives a meaning to the limit of rigid particles: in c< ) (6.4)
generic situations, when the sizes and shapes of the grains d(d+1) inthe general case.

are affected by some amount of randomness, there is no

pro_blem of force indeterminacy once an equilibrium Config'U'Particles in 3D that possess an axis of revolution, like sphe-
ration has been reached. The actual value of contact force; .

X . ; . Eids, also have one trivial rotational free motidim the
W'." not depend on the d_etall of the contact Iaw,_ prowded Itabsence of friction Thus one should subtract one degree of
might be regarded as rigid, but it will be sensitive to fine

i . . - freedom for each, hence the bouoe<10, instead of the
geometrical details. As an example, consider frictionless

. . general 3D value 12.
elagt!c contacts obeying Eq3.6). Let us assume t.hat a stablg Interestingly, an estimaie=11 for the coordination num-
equilibrium state of the grain assembly, regarding the graing

o > r of long rods or fibers was given by Philigs$], on the
as perfectly rlgld[co_nqmon (3.1], ha_ls be_en reached. One basis of some statistical assumptions about the random pack-
thus has a local minimum oV [defined in Egs.(2.4) or

(2.5]. Then, let us take into account the finite, but small,Ingls of such particles.

. : . What we have established is in fact thlesence of hyper-
deformability of the contacts. The same list of contacts W'"staticit of a genericallv disordered assemblv of rigid arains
carry forces that, to first order in the small displacements, dg Y g y Y gidg '

. o ) regarded as frictionlessForces, in the derivation, appear
not change. Evaluation within the ASD of relative normal . o e ;
) ) i : _ only as convenient auxiliary quantiti€virtual” forces) to
displacement$, <0 in force-carrying contacts yields, =

~(f, /KM such relative displacements are compatible be_deal with a purely geometric problem. The conclusions thus

) oy : “hold in the presence of solid friction. Assemblies of rigid
cause of the isostaticity property, and the resulting elas“%rains with friction therefore abide by inequalit§.4). (It is

energy of course well known, from numerical simulations in particu-
1 1 lar [37-39, that the contact coordination number is a de-
\A/e'zm > K,|h,|m+1=m K, Umg(m+1)im creasing function of the friction coefficiept.

It is also worth pointing out tha6.4) does not depend on
the polydispersity of the grains. Grains that are much larger
than their neighbors will often touch a large number of them.
However, this effect should be compensated in the average

rdination number n ite on ffecting small
Once an equilibrium state has been reached, force values dination number by an opposite one, affecting sma

; RO rains. When they touch a large one, this latter effectively
_do not depend on the defalls of the_contact law: this 1 argccupies half of the surrounding space, thereby reducing the
important step on the way to threduction of the mechanics

of granular systems to geometrthe basic goal of the possibility for other contacts.

: . o On the ground that force-carrying structures should be
resent paper. This contributes to ease the derivation of ge:- . , . o .
geric mepc):hgnical properties of granular systems. ’ figid (devoid of mechanism=ko) the oppositenequality,

The simplification that results from the isostaticity prop- N=N;, whence théower boundd(d+1) (2d for spheres or

erty should, however, be balanced with the two followmgd'Skg for the coordination numb_er, IS somet_lmes quoted in
A . ; ; the literature[40,35. We regard it as wrong in gener@l-

difficulties. First, configurations of granular systems, due to . TSI

. e . . ... though true for systems of noncohesive rigid frictionless

the same isostaticity property, are necessarily quite sensitive

to fine geometric details: tiny variations of grain dimensionsSpheres’ as we shall eés pointed out by Alexanddr0],

=~ i . he physically relevant concept is not rigidity, but stability
or positions might lead to opening of some contacts. As al under a given external loadThis is discussed in Sec. VIl
contacts are indispensable to support the load, the system has 9 . - ’

elow. First, Sec. VIl is devoted to the exploitation of poten-
to rearrange somehow to create other contacts that COmpefl, " i : -
. - ial minimization properties within the ASD.

sate for those that were lost. This is the origin of a property
known asfragility, to be more accurately defined and dis-
cussed in Sec. IX.

Secondly, one should be aware that the choice of an equi-
librium configuration among several possible ones might de-
pend on physical parameters other than the geometry of the The approximation of small displacements introduced in
grains. The reduction to geometry is thus not complete. IrSec. IV has several important consequences. Finding an
Sec. VIl below, the consequences of the ASD are studiedgquilibrium state amounts, in some cases, to solving a con-
and it is shown that mechanical problems are entirely geovex minimization problem, for which optimization theory
metric within the approximation. provides useful properties and tools. The relationship with

As a consequence of the absence of hyperstatidity ( percolation or minimum path models is also to be discussed
=0), one readily obtains from Ed2.16 a bound on the within the ASD.

tends to zero as stiffness constalistend to infinity. Thus
the actual values of constari{s and exponenin (these data
might vary from contact to contgcére irrelevant.

VIl. EQUILIBRIUM AND POTENTIAL MINIMIZATION
WITHIN THE ASD
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A. Convexity lems, for which they are sometimes presented in particular

When the potential energy is a convex function of dis-forms [41,42. Here, in order to stress their physical mean-
placements or positions, and when the rigid constraints del'd. We shall directly rederive them. We consider an assem-
fine a convex set in configuration space, then the search for}y of rigid frictionless grains, satisfying the Signorini con-
stable equilibrium state is a convex optimization problem ditions (3.1), dealt with within the ASD. We assume a
and the following important properties can be exploftéd. strl_Jcture has begn defmec_j., apd if the load is supported, some
(1) The equilibrium conditions, which express titionar-  Of its N bonds will, at equilibrium, closeh(=0) and trans-
ity of the potential, are not onlyecessaryconditions for ~ Mit a force {>0). The following also applies if condition
potential minimization(i.e., stability, they are alsosuffi- (3.1 is replaced by(3.3) or (3.4).
cient (2) A local minimum of potentiaW is a global mini- Keeping the same notation as in Secs. Il and 1V, we know
mum. W is ﬂat’ equa| to its minimum Value’ over a convex that the Impenetrablhty constraints are expressed with matrix
set of possible equilibrium configuration&3) A structure

being given, a supportable load will be supportet]. Equi- Ny
librium forces are the solution to another optimization prob- <ho <<
lem (the so-calleddual problem. (5) Rigid laws and elastic ,;1 Giuuu<hr for 1<I<N, 7.

ones can be dealt with in the same way.

Let us, among the contact laws presented in Sec. lIl, disthe transpose of which appears in the equilibrium equations
tinguish the ones that lead to convex problems. It should be
remarked first that standard convexity is defined in vector
spaces, not on manifolds. In order to exploit the classical
results of convex optimization theory in grains of arbitrary
shape, it is necessary to place ourselves within the frame dfhroughout this section, compact notation will be used for
the ASD, which replaces the curved configuration space byectors of external forcepFe*! for (FZXt 1§Mng] contact

H N
its flat tangent spacé™. . _ forces[f for (f)1</=n], interstices h for (h;);<=n], and
As intergranular distances are, within the ASD, affine displacementgu for (Uu)1<M<Nf]’ the bracket notatiofe.g.,

functions of displacements, it follows that both rigid con- fn] i d for lar oroducts. whil rator notation
straintsh;=0 andh;<0 define a convex sdand so does (fin] is used for scajar products, € operator notations
and abbreviation for inequalities reduce H{.1) to Gu

h;=0): the accessible part of configuration space is a sim-<ho

plex, a convex set whose boundaries are a collection of flat" -

sectiongparts of affine spacesSince the potential energy of

external forcesy, is linear in the displacements, its minimi-

zation belongs to the class bhear optimization problems ~ We now show that finding equilibrium displacements is

that are the subject of a large literature in applied mathemagquivalentto solving the following linear optimization prob-

ics and operational research. This important case—granuld@m P;: Minimize W=—Q\ = —EFfL"‘uM with constraints

systems within the ASD with contact laws of ty@1), or  in Eq. (7.1). We know from Sec. Ill that a solution to prob-

systems abiding by Eq3.3) or Eq.(3.4), or tensegrities—is lem P, provides a set of Lagrange parametefi$ (< <y that

dealt with in detail in Sec. VIIB. satisfy both conditiong3.1) and (7.2) [or (3.2)], and are
Still within the ASD, contact laws involving smooth in- therefore equilibrium forces.

teraction potentials will lead to convex problems if the po- Conversely, in the case of a linear optimization problem

tential functionw is convex. This is the case for unilateral such asP;, the stationarity condition is sufficient to ensure

elasticity, as defined in Eq$3.6) and (3.7), but not for in-  that W is minimized. This can be checked as follows. Let

tergranular potentials that possess an attractive tail as in Figi* €V represent one solution for displacements, and, like-

6. wise, let us denote equilibrium contact forcesag RN. To
Outsidethe ASD, convexity can be discussed in the cases* corresponds the set of valulk$ for interstitial distances,

of spheres or disks, since, ignoring rotations, their configuand the Signorini condition might be expressed as

ration space is flat. One immediately checks, then, that im-

penetrability constraint$, =0, define a nonconvex set of (f*|h*)=0,

admissible configurations ondg is no longer approximated ) _ )

as an affine function of displacements. The opposite inequal¥ile any displacement vectare V, corresponding tb, sat-

ity h,<0, on the contrary, does lead to convex problems. A$S"€S

we shall see, frictionless spheres on the one hand and sys-

tems of strings tied together on the other hand behave ex-

actly in the same way, upon reversing the 'sign'of forces angt, o the theorem of virtual work, one then has

deformationswithin the ASD, but strongly diffewithoutthe

ASD. W(u) = W(u*)=—(f*|h*) +(f*|h)=0

N
> G, fi=F2  for 1<u<N;. (7.2)
I=1

2. Minimization in displacement space

(f*|h)=0.

B. Rigid, unilateral contact law and displacemeni* minimizes the potential energy.
Figure 8 is a schematic representation of problBmA
simplex, defined by a set of affine constraints likel), is
The properties of convex problems enumerated above afanited by flat faces, where some of the constraints are ac-
valid, in particular, in the case of linear optimization prob- tive. Its extreme pointsthe “corners”) are where a maxi-

1. Context and notation
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displacements go to infinity withiA. Now let us assume the
load is not marginally supportable. One can apply a small

load increment §F;);,-n, such that E3

+6F ) 1< =n, is still supportable, with §F 5 )1 ,<y, in

the direction for whichA is not bounded, which leads to a
contradiction. Therefore the load has to be marginally sup-
portable ifA is not bounded.

4. Dual problem in bond force space

We now turn to the dual optimization problem, to which
equilibrium contact forces are the solution, viz., problgth

Maximize Z(f)=— (f|h%=—3,h?f,

FIG. 8. Aspect of simplex of variables satisfying affine con- \yith constraints in Eq(7.2) andf=0.
straints like Eq(7.1), cut by the plane of the figur&V is constant (7.3
on parallel hyperplanesketched as dotted lines, orthogonalRo '
projection of the load direction onto the plan@/ reaches its mini-  \We know that equilibrium displacements*) and contact

mum at one extreme point at ledke A andB) or on “faces” or  forces (* =0) respectively satisfy Eq$7.1) and(7.2), and
“edges,” included in an affine space of dimensiarthat are part of  gre such that

the simplex boundarylike segmentAB). The hatched region is
forbidden by impenetrability constraints. (f*](Gu* — hO)) =0. (7.4

mum list of constraints are simultaneously active. The crite-Thys, any possible set of non-negative bond fofdeslanc-
rion to be minimized is itself an affine function; it is constant jng the load is such that

on hyperplanes that are orthogonal to the load. Equilibrium
is achieved on the simplex boundary, at least in one extreme (f[(Gu* —h%)=<0=(f*|(Gu* —h?))
point, in general on a simpleX in a space that is orthogonal
to the load direction. Lek (smaller thanN;) denote the on the one hand, and
dimension of this space. Within the set of solutiolg,is
constant, and a certain numbéf of contacts are maintained (flGu*)=(GTf|u*)=(Fe*u*)
closed. Let us denote this structure &: it is the list of
contacts that are closed for all equilibrium configurations.on the other, which entailg(f)<Z(f*): f* is a solution to
For those equilibrium states that are on the boundarp,of problem?P,.
some additional contacts are created. It follows from its defi- Conversely, if one starts from probleR} and considers a
nition thatk is the degree of velocitthere, within the ASD, solutionf*, then it is possible to define a;-vectoru* of
of displacementindeterminacy ofS*. Since, from Sec. VI, Lagrange parameters corresponding to constr&ih® and
its degree of hyperstaticity is zero, one hasN;— N*. an N-vector h of non-negative Lagrange parameters corre-
sponding to constraints=0, such that
3. Supportable loads will be supported

_ Lo * —
In general, displacements are thus determined up to some h™+Gu* +h=0. 79

motion within convex sef. Let us now show thad is not
empty if the load is supportable. We assume some staticallg//I
admissible forcesf@)NSN to be defined on the bonds of =
the complete structure that was defirgegriori. Then a finite
lower bound forW on the whole simplex of admissible dis-
placements can be obtained upon writing the variatiokVof
from the reference configuration as

oreover,h, vanishes whenevefi>0. This means that*
actually a displacement vector abiding by Eg.1), and
Eq. (7.5 entails that the Signorini condition, in the form
(7.4, is also satisfied. We know then that is a solution to

l.

Equilibrium displacements and contact forces thus coin-
cide with the respective solutions #®, and P,, a pair of
linear optimization problems in dualityWVe have shown the
AW=— > flsu=- h?. following.

1<I=N 1<I=N (1) If u* is a solution toPy, then it is possible to find a

o _ solutionf* to P,, Eq. (7.4) being satisfied.
W thus cannot decrease tox within the simplex, and has to (2) If f* is a solution toP,, then it is possible to find a

reach a finite minimum S(_)mewhere on the boundary. Morexg|utionu* to P,, Eq. (7.4) being satisfied.

over, one can show that is also bounded, except fonar- (3) If u* andf* respectively abide by the constraints of
ginally supportable loads. We say the loach@ marginally  gptimization problemsP; and P,, and if, in addition, Eq.
supportable if there exists a small neighborhood of(7 4 [equivalent to the Signorini conditioi3.1)] is satisfied,
(F5)1=p=n, in force spaceF within which all loads are thenu* andf* are respectively solutions B, and P,.
supportable. Let us now consider a situation in whicls (4)The optimum values of the criteria are equal in both
not bounded. One can then find one direction along whiclproblems: condition(7.4) ensures that/(u* )= Z(f*).

A
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5. The uniqueness property with k=0.314*+0.003 in the case of a uniform distribution of

Within the affine space of bond forces satisfying Eq."adil-
(7.2), constraints;=0 define a simplex, and, just as By,
the set of solutions t®, is a convex parB of its boundary.
Let h denote the dimension of the affine space spanneBl.by  As equilibrium contact forces are the coordinates of an
SinceB is the set of possible equilibrium forcedsjs in fact  extreme point of the simplex of proble,, a maximum set
the degree of force indeterminacy of the problem. Generiof inequality contraintd,=0 are simultaneously satisfied as
cally, one has, from Sec. Vh=0, and the only solution to equalities,f,=0. This means that force-carrying struct®%
problem?P, is an extreme point of the simplex of admissible is minimal with respect to the equilibrium requiremeémnt2).
forces. We have thus shown thatterms of forces the solu- In Sec. VIC, we invoked an iterative dilution process to
tion is uniquely determinedThis is a stronger conclusion define irreducible sets of self-balanced forces. Likewise, one
than the sole isostaticity of the problem established in Seacan define minimal structures, such&fs, as irreducible by
VI: in general, contact forces are uniquely determimede  further dilution, since it is impossible to require more bond
the list of contacts is knowrn the case of a system of rigid forces to vanish if the load is to be balanced. Any such
grains, with contact law3.1), dealt with within the ASDthe irreducible structureS might carry a unique set of bond
list of force-carrying contacts itselthe list of bonds, among forces balancing the load; it geometrically determines one
those that are defineal priori in the reference configuration, solution to Eqs(7.2).
for which neighboring grains will actually touch and exert a  Recalling that we have defined a loading paraméeto
force on each othelis uniquely determined-orces are car- which all external forces are proportional, there exists for
ried by contact structur&*, which was defined in connec- each minimal force-carrying structu&a set of coefficients
tion with the discussion of the solutions to problémy, and, (B|L)1<|<N, such that the forces carried Bthat balance the
if some mechanisms exisk$0), the other contacts that load are
might be created will not carry any force.

If the contact law is Eq(3.1), if geometrical changes fi=8"Q. (7.7)
from a reference configuration are small enough for the ASD _—
to be valid, if the load is supportab{but not marginally sp Y definition, one has

7. Minimal structures: Analogies with other problems

then the system will reach an equilibrium state, which apart BS£0 if leS

from bounded displacements within convex Aefwhich do ! '

not changew) is totally independent of all dynamical prop- BSZO if ¢S

erties of the system, and entirely determined by the geometry ! '

only. Among all minimal structuresS with non-negative coeffi-

cientsB7, S* minimizes
6. Examples
SystemsA andB introduced in Sec. |l were treated within Bih?.
the lattice model defined in Sec. IV B, with the ASD and leS

condition(3.1). Structure SA1, once the random numbérs Let us now recall the analoay with the problem of current
were known, was obtained as the uniquely determined list (2{ gy P

force-carrying contacts at equilibrium under the load define ransport on a reS|s_tor_network, as mtroduqed in Sec. V, with
he following constitutive law. To the requirement that con-

by Eq. (2.18. Within the ASD, it is possible to close two tact forces are repulsive corresponds arentation of the
other contacts, e.g., those that belong to SA2. However, the P P

will not transmit any force. Likewise, for specific values of ngSbgaggnbﬁgggg 2?} ddéoggfri;ithseorn"tnzagu:?esrlist;tof(.) Bond
the §;’s, SB1 was obtained as the list of force-carrying CON-4\ ~tis related to the potential difference— oy, b theb;na-
tacts in systenB submitted to the load that is represented inI f the Si e p dition: &~ Up DY

Fig. 2(a). It is possible to close some other contatsch as 0g ot the Signorint condition:

those that belong to SB2but they cannot carrwithin the i.,>0 if vo—vp=0°

ASD) any force. Uniquely determined force-carrying struc- 2 @ ab:

tures, depending on the load, will possess a varying degree =0 if va—vp<v?, (7.9
ab- .

of displacement indeterminady Once systenB, in addition

to the forces on the perimeter, was submitted to sinat- The bond becomes a supracondudtbe analog of a rigid
domly oriented external forces exerted on each grain, thencontaci when the threshold potential differenagd, is
isostatic structure SB2 was obtained. _ reached, and it is an insulatordf,— vy, is smaller.

In Ref. [9], the triangular lattice model, as in Sec. IVB,  |tjs customary to define a scalar analog of the mechanical
was studied for isotropic loads. As an application of gh#®  |pad by injecting some external currdnin one node, which
bal minimization property, it was shown within the ASEb e denote as, and extracting it from another, which we
first order ina) that the maximum packing fraction of poly- denote a®. | is then the analog of the mechanical parameter
disperse disks in the limit of large systems is equal to Q. A minimal structure(i.e., one that cannot be further di-

luted) to carry the current is pathfrom i to o. If its coeffi-

cients 8 cannot be negative, it is directed path on which
(1—ka), (7.6 the current flow respects tha priori orientation of the
243 bonds. On such a pat§ all bondsl € S carry the total cur-

o

D max=
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rent I; henceﬂf‘zl for all I €S. In the analogous scalar All intensive quantities, like, e.g., distributions of force val-
problem, the current is carried by the directed p&ththat  ues, density of the contact structure, distribution of contact
minimizes, among all directed patlS§rom i to o, the crite-  orientations, etc., were found to possess well-defined ther-
rion modynamic limits, independently of the details of the bound-
ary conditions, provided a uniform state of stress is imposed,
s o o gnd thg_stress ten;c‘g satisfies copditions{?.g) as sFrict
“ Brv, =|ES vy inequalities Correlation lengths or, in other words, sizes of
representative volume elements or of independent sub-
ystems, are finite, but appear to diverge as marginally sup-
orted loadgfor which one of conditiong7.9) holds as an
equality] are approached.

As in Sec. IV 3, we take the undisturbed lattice, in which
the spacing between sites is equal to the maximum disk di-
ametera, as the reference state, a strain tensocan be
identified. It is related to displacement fialdby

In the scalar problem, the criterion reduces to a sum o
“costs” associated with the bonds of the network.

The analogous problem 1, in the scalar case is thus the
well-known minimum directed pathor directed polymer
problem on a network43]. This analogy was introduced in
[20] for problemP;, upon transforming the minimum path
problem into the dual problem, which consists in maximizing
the potential drop;—v,, knowing that in each bontv, 1/ du, dug
cannot exceed the threshold vakfe. The dual point of view €ap= 5( Fv
adopted here—the analogy for probleRy—stresses the
geometric origin of equilibrium forces as coefficients char-and the potential energy per unit surface area is
acterizing the maximum localization of efforts onto structure
S*. Contact forces in granular packings have often been W= —0,p5€65,= — '€ (7.1
studied in the recent literatuf@0,44,49. It is interesting to ] o o
be able to define them as the solution to a well-defined op(Summation over repeated indices implied _
timization problem of random geometfg7]. ~ Coordinates of the tenserare found to be expressible as

Some statistical properties of structur®s were studied ~linear combinations of the average of bond elongations
in Refs.[9,15], in the case of the 2D triangular lattice model, for the three bond orientations of the triangular latticegIn
as defined in Sec. IV B, with a uniform distribution &fs. It ~ SPace(three-dimensional for a 2D systgmmpenetrability
was shown, in particular, for isotropic loads in the limit of conditions define in the thermodynamic limit a strictly con-
large systems, that the density of force-carrying bonds tendéeX accessible domai, limited by a smooth surface, the
to a nonvanishing limit, and the distribution of contact force €guation of which we denote as
values was evaluated.

The statistical properties of the solution to the “directed f(e)=0, (7.12
polymer” problem are related to those of directed percolay, e the interior of accessible regidh corresponds to the
tion [43]. Likewise, one can expect, in the case, in particularg . inequality
of a very wide distribution of values df, in the mechanical
problem, the minimization problerf, to be related to some f(€)<O.
unilateral percolation problem. Such a percolation model has -
never been studied to our knowledge. It ig@ometricorob-  As a macroscopic consequence of the variational properties
lem, unlike generic central-force percolatif2?], for which  stated in Sec. VII, the relationship between tenserand e
(in 2D at least only the topology of a diluted structure mat- is the following: ) )

; (7.10

IXg X,

ters.
—(ﬁ ith A=0 if f(e)=0
8. Some macroscopic results for the triangular lattice model o= A €] wi - if 1(¢)=0, (7.13
ij .
To see what macroscopic mechanical behavior might re- 0 if f(e)<O,

sult from the properties stated in this section, we briefly re-
call here some results obtained by numerical simulation oiWherever the granular system transmits stress, the valge of
the triangular lattice moddll7], as presented in Sec. IVB, is as far as possible in the directiong@fwithin D, i.e., where
with a uniform distribution of parametei [Eq. (4.2)]. the tangent plane to its boundaXyis orthogonal tag, thus
Samples of up to 12 600 disks were submitted to varyingminimizing potential energy7.11).
states of stress. The following inequalities, in which coordi- D is unbounded in the direction of nonsupported loads.
nate label 1 corresponds to one of the three directions aBtrains go to infinity on the surfacg when the stress tensor
dense rows in the triangular lattice, and compressive stressepproaches one of the marginally supported directiBnsas
are conventionally positive, define the domain of supportedhree asymptotic planes, respectively orthogonal to these
loads, as macroscopically expressed in terms of stresses: three marginally supported load directions.
The one-to-one correspondence between supported stress
095<3011, directions on the one hand, and strain tensors such that
(7.9 f(€)=0 on the other hand, is a macroscopic translation of
the unigueness property stated in Sec. VIIB5. The potential
72, <72 energy density has a finite thermodynamic lifaitresult that
J3 J3 generalizes to nonisotropic states of stress the one of Eq.
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D. Smooth, convex interaction potentials

In the case of the elastic contact |48:6) within the ASD
all properties of convex problems enumerated in Sec. VII A
are valid. Let us state the “elastic” versions of the “rigid”
optimization problems of Sec. VIIBP; is simply replaced
by problemP¢': Minimize W'°! defined in Eq(3.8), while
contact forces are the solution to problgh§':

m
Maximize— >, | h’f,— mK—l/mfl(m+ 1)/m
]
FIG. 9. A small sample of the triangular lattice model, in which

the only mobile disk, marked 1, is slightly smaller than disks 2, 3,
and 4, and is submitted to an external force. Disk 1 is shown in one
possible equilibrium position, in contact with 2 and 3. The other
one is sketched with a dotted line.

with constraints in Eq(7.2 and f=0. (7.19

The function of the contact fordethat appears within the
sum is the opposite of the Legendre transform of the elastic
energyw, regarded as a function of relative displacemgunt
(7.6)], and possible variations af within the convex sef i.e.l, fou—w(éu), taken withf=dw/d(éu). Thus, solving
discussed in Sec. VII B 3 shrink to a vanishing rangebé- P35 amounts to “minimizing the complementary energy,” a
comes uniquely determingds the system size grovx?s. common procedure to find the' forces in an .elastlc proplem.

The constitutive law(7.13 can be used to solve for stress .In fact, one could h"f‘VG d.efln.ed a potential energy in the
and displacement fields whenever a sample of the model m&'—g!d case equal tor o 'f grains Interpenetrate, and treated
terial is submitted to some external forces that do not lead té'g'd problems exactly like elastic ones, constraintl) be-

unbounded displacements and overall failure. The field of "9 taken care of by the definition of the potential, If the

P : ) i region in phase space that is forbidden by the constraints is
values should be obtained on solving the full boundary Valu%onvex then such a potential can still be regarded as a con-
problem. ’

vex function. Both the conditioi3.1) and elastic law(3.6)
are then expressed by

C. Systems with bounded tensile forces f e aw(du),

If the unilateral contact law3.1) is replaced by Eq(3.5), in which sw(éu) denotes thesubdifferentialof w at du, i.e.,
the remarkable properties stated above in Sec. VII B are losthe set of allf such thatw(su’)=w(su)+ f(su’— su) for
Let us illustrate this with a simple example. Consider theany su’. This mathematical possibility of unifying rigid and
system depicted in Fig. 9, to be dealt with, within the ASD, elastic laws is specific to convex problems. This is the pre-
as a triangular lattice model in the sense of Sec. IV B, thecise meaning of property 5 cited in Sec. VIIA. Here, we
contact law beindg3.5). Only one disk is mobiléno. 1), and  preferred to resort to a separate presentation of the rigid case
we first consider the case of a vertical force of intengify in Sec. VIIB, to stress the physical consequences of the
oriented downward as in the figure, keepig=0. (Later in ~ Variational properties. The reader may refer[48] for a
Sec. IX we come back to this simple example and discuss it§'0r€ systematic approaclh. _
behavior wherF, is altered) Two equilibrium positions are ~_ ComparingP, and P5', as defined by Eqs(7.3) and
possible: disk 1 might be in contact either with disks 2 and 37-14. one may expect the following behavior for the distri-
or with 3 and 4. As grains are rigid and exert normal forceg?ution of contact forces, as a set of grains with elastic con-
on one another only when they exactly touch, the problem i%?gts is submitted to a constant load but the sﬂffngss constant
isostatic in both equilibrium configurations, in agreement IS gra_dually reduced(.SlmllarIy,_ one could also Increase
with the general property of Sec. VI. The load, defined withQ’ kgeplngl_< .con.stant). Whe_:n K IS very large, the elastic

. - term is negligible in comparison with(f), and the values of

Fy>0, is always supportable on structusg, consisting of

L the forces should coincide with th@nique rigid contact
bond.s _1'2 and 1-3, and it is also supportable on strudyre g o, of P,. Thus the contact structure should barely suf-
consisting of bonds 1-3 and 1-4 as longfas<foy3. fice to carry the load(isostatic problem and the forces

Thus, for 0<F,<f/3, even within the ASDthe equi-  should exhibit the characteristic disorder of granular sys-
librium state and the list of force-carrying contacts are not tems, with large fluctuations, force chains, etc. On the other
uniquely determinedWhetherS, or S, will be chosen de- hand, let us assume that the list of possible contésttsic-
pends on the trajectory of disk 1 from its initileferencé  ture Sy) is well coordinated; that there are many more con-
position, in which it does not have any contact. tacts that are easy to close upon increasing the confining

Likewise, supportable loads are not necessarily sup-forces or decreasing the contact stiffness parameters. Then,
ported To check this, let us remove disk 2. In its motion, in the limit of smallK, Z(f) will, in turn, become small in
disk 1 might come into contact with both 3 and 4, and,comparison with the elastic energy. The elastic term tends to
provided 0< Q< f,+/3, reach an equilibrium position, main- share the forces between contacts equally. Thus, a narrow
taining those two contacts. However, it might also neverdistribution of force values is expected in this limit, and spa-
meet disk 4, and find a trajectory past disk 3 on which itstial heterogeneities should be strongly reduced. Knowing
potential energy will keep decreasing forever. that the minimum structur8* and the complete list of pos-
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sible contactsS, are of comparable densities, the order of The validity of the ASD—which might at first sight ap-
magnitude of the average forég does not change as grains pear as a mere technical aspect—is finally a crucial ingredi-
are made softer. The two extreme regimes of stiff and sofent of the model granular systems that we are studying here.
contacts should thus be defined respectively by the condithe next section examines some stability properties that are
tions K> fo/hT andK<f,/h™, involving a typical intersti- i_mportant as soon as one does not resort to the approxima-
tial distanceh,. tion.
Those two limits, and the transition regime in which the
contact density increases, have been obsdi@bon the 2D VIIl. OUTSIDE THE ASD: QUESTIONS OF STABILITY
triangular lattice model, as defined in Sec. IV B, with contact \ye now enforce on physically acceptable equilibrium
law (3.6). states another requirement: that they shouldstable We
limit ourselves to the cases when stability can be discussed
in terms of a potential energy. If the equilibrium state is a
E. Remarks: The “elasticity” of rigid grains local minimum of the potential energy, then there exists a
As announced beforehand, we have exhibited in this sedegion of finite extent in displacement space, around equilib-
tion model granular systems for which, at the expense ofium positions, within which the system is spontaneously
several assumptions, including the validity of the ASD, me-ttracted to the equilibrium configuration. . o
chanical properties are entirely determined by geometry. we Within the ASD, one can discuss only potential variations
have seen that the distinction between systems made of righ§at are of first order in displacements. When floppy modes

or deformable grains is not necessarily as important as on@ist (k>ko), they appear as marginally unstable and one

might have expected: similar potential energy minimizationCannOt tell whether, to higher orders, they actually destabi-

. . . lize the equilibrium configuration. The mechanical response
properties can be stated, the limit of large contact stiffnesses . . ;
to small perturbations or load increments is strongly depen-

e e L et o tese sabiy questons
P P In general, we will show, with exampleSec. VIIIA),

some systems of rigid grains, as recalled in Sec. VI B 8. Th%hat the answer might depend on quite specific geometrical
difference between the systems where the search for an €Y5atures of the granular system and on the contact law. We

“b“ur?h sta’;e Isrt? ccl)in\t/eg i?g'm'zslt;%n ?rObliig?ia\g(;“tchh are only able to give general answers for spheres or disks, as
g?r?eers(sughogi‘ tﬁz eSXSm le gfcéec Vi?] eﬁssfilnall mors shown in Sec. VIII B. Section VIII C discusses some conse-
P : y quences on the geometry and coordination of granular pack-

relevant. - ings at equilibrium, and on the macroscopic mechanical be-
The constitutive law(7.13 expresses a one-to-one corre- havior

spondence between the direction of the stress tegsand
the strain tensok, which is restricted to belong to the sur-
faceX. It is quite similar to a macroscopic elastic law, even
though it applies to systems of rigid disks. The response to a ] o . .
supported stress increment will be reversible. If this incre- We consider rigid frictionless particles of various shapes,
mentJdg is in the direction of the preexisting stress tensor and discuss the _s_tab|I|ty of simple co_nflguratlons,_whmh de-
then no additional displacement or stress will result for rigidP€nds on the ability of contacts to withstand tension and on
grains. For deformable grains, if contact 1&8vl) is replaced  the shape of the grains.
by Eq. (3.6), a small deformation, inversely proportional to
constant, will follow. If, on the other handgg is orthogo-
nal to the initial stress tensor, its application will entail a Assume three spheres, or three disks in 2D, to have their
small strain incremenge, such that the new strain tensor centers aligned as in Fig. 10, the two extreme ones being
will be exactly the point o where the orthogonal direction submitted to opposite forces in the direction of the line of
is that of the new stress tensor. In this second case, the apenters. Let us discuss the problem in 2D. The determination
parent elastic modulus is thus inversely proportional to theof contact forces is an isostatic problem, and there is, apart
curvature of surfac&. from rigid body motions, a trivial mechanism corresponding
In spite of the analogy presented in Sec. VII B 7 betweerto free lateral motion of the middle disk 2. This is of course
the backbone of the force-carrying structure and costwell known to lead to the familiar buckling instability if one
minimizing directed paths for scalar transport, the statisticapushes the extreme disks toward each other, and to be stable
properties of those two systems are quite different. In agredf one pulls on them, provided the contacts can resist tensile
ment with various results on disordered systems of grainforces. In the latter case, assuming one controls the forces
[8,47], the triangular lattice system was foupts,9,17 to  parallel to line 1-2 exerted on particles 1 and 3, while their
possess a standard thermodynamic limit: intensive quantitiggosition in the other direction is fixed, the system will re-
like the density of the backbone, the strains, and the distrispondelasticallyto a small additional force exerted on disk
bution of contact force values have limits in the limit of large 2, even though the contact law is rigid. After the system
system sizdexcept for marginally supported logd©n the reaches its new equilibrium state, the orientation of contacts
other hand, unlike the force-carrying structure in the me-ds such that the new load is orthogonal to the floppy mode.
chanical problem we have been studying, the optimal di-Specifically, ifgis the lateral force pulling disk 2 away from
rected path in the corresponding scalar problem is a criticathe line 1-3, and if denotes the external force exerted on 1
object. and 3, the new position of the center of disk 2 is such that,

A. Simple examples

1. Bond alignments
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FIG. 10. An alignment of three spherdsft), the middle one
touching the other two. Spheres 1 and 3 are submitted to equal and
opposite forces along the line of centers. The new equilibrium con-
figuration, upon exerting a lateral forgeon the middle sphere, is

shown on the right. FIG. 11. An alignment like that of Fig. 10, the middle sphere

being replaced by an object turning concave parts of its surface

assuming equality of the three radii, the anglg between toward spheres 1 and 3.
1-3 and 1-2(Fig. 10 s given by compressive forces, unstable for tensile ones. Thus stability

properties are quite sensitive to particle shape.
Go=tan ! —)
2f 2. Arches
while contact forcestensile, and therefore negatjvare Systems submitted to gravity provide other familiar ex-
amples of nonrigid equilibrium states. A string of circular or
f1o="To=—1f cog6y). spherical particles, each of them tied to two neighbors by a

frictionless contact condition that supports tension, behaves
The potential energy as a function 6f(# parametrizes the as a chain, and will eventually adopt a stable equilibrium

free motion that maintains the two contacatsads as configuration if one fixes its two extremities and lets it
dangle under its weight. The number of mechanisms in this
W= —2afcoq6)—agsin()=— a\af2+ gZCos{ 0—6y), system is equal to the number of free particles.

The analogous system to the chain in which contacts
and has its minimum foé= 6. This elastic behavior is simi- transmit compressive forces is the arch, Fig. 12. The general
lar to that of a rigid string under tension, which will deform result for spheres entails that all arches made of spheres are

in response to lateral forces. unstable. However, one usually builds arches with appropri-
On carrying out the same calculations in the case of comately shaped stones, e.g., carving them to share common flat
pressive forces, witf <0, one will notice thatg and 6, lateral surfaces with their neighbors, as in Fig. 12. Such an
corresponding to the equilibrium position of disk 2, are nowarch is a system that possesses one floppy mode per stone
of opposite signs. One then has (still assuming no friction but its geometry might be ad-
equately chosen to support the load. In such a case, any free
W=a4f*+g°coq 6 6p), motion of the stones, which slide on their flat common sur-

o o o N faces, all contacts being maintained, does not change the
which is maximizedin the unstable equilibrium positiofl  potential energy. One thus has an examplenafginal sta-

= bo. bility. Such an arch is able to carry only the one particular
In Sec. VIII B, we show that the conclusions reached on

this simple example are general: any floppy mode in a sys-
tem of disks or spheres that admits only compressive contact
forces leads to an instability. If, on the contrary, all contact
forces are in fact tensile, the system being thus analogous to
a network of tight strings, any floppy mode is stable, and an
elastic response to small load increments can be observed.
Let us now replace disk 2 by a particle presenting concave
surfaces toward disks 1 and 3, as shown in Fig. 11. The
system is similar to that of Fig. 10; the free lateral motion of
the middle particle, maintaining the contacts, is a mecha-
nism. It is not difficult to show, however, that the configura-
tion of Fig. 11 has, compared to the alignment of disks,
opposite stability properties: the mechanism is stable for FIG. 12. An arch built with stones sharing flat lateral surfaces.
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2. Cohesionless grains

In the absence of tensile forces in the contacts, an equi-
librium configuration of rigid, frictionless disks or spheres is
necessarily unstablég the backbone is not rigidWe shall
prove this by yet another application of the theorem of vir-
tual power, as follows.

We assume a packing of spheres to be in equilibrium
under a prescribed load. Spheres are rigid, and the problem is
therefore isostatidp=0. Flat walls can also exist, e.g., as a
device to enforce some kind of boundary condition on the

FIG. 13. The upper grain 1 relies on two of its neighbors and isPacking, but we assume that they cannot rotate. We assume
submitted to its weight, oriented downward. Its rotation is a stablethere is at least one mechaniske=1. Consequently, it is
floppy mode. possible to move the grairand the wally while maintain-
ing the whole list of contact§The possibility that a mecha-
nism could exist for the considered equilibrium configuration
alone and disappear as soon as the grains are displaced is to
be discarded as nongeneric. This would, in particular, due to
Eqg. (2.16, entailh=1.] We now study the variation of the
3. A stable mechanism with strictly convex cohesionless grains potential energy in one such motion, with a “time’param-

In view of the previous examples, one might be temptec®trizing the trajectories, and show that it decreases.
to infer that, when contacts support only compression, Objects do not rotate in this motidthis is an assumption
mechanisms can be stable with concave gréfig. 11), are for walls, and rotations of frictionless spheres are ignored
sometimes marginally stable with flat surfad€gy. 12, but ~ anyway. Particlei has a time-dependent veloci(t), and
are always unstable with strictly convex graiff@g. 10). initially, in the equilibrium configuration from which the mo-
This is not true, however, as shown by the simple example ofion starts att=0, touches its neighbor at a pointAf,
Fig. 13. We are not aware of other general answers to thighere the normal unit vector to its surface, pointing to the
question of stability than the ones that are given for spheresenter ofj, is nioj , the equilibrium contact force beinf; .
below. Let A;;(t) denote the material point of the surface of grain
that was atAﬂ initially. Similarly, following the material
_ motion of j, one definesA;;(t), which does not coincide in
B. General results for spheres and disks general withA;;(t). It is possible at each timeto apply the
1. Tensile contact forces (systems of cables) theorem of virtual power, thus evaluatingy’(t), the time
_ derivative of the potential enerdg¥ at timet, as follows. The
_ Inthe case when all contacts carry a tensile force at equigefinition of a structure, in Sec. II, was in fact completely
librium, then stability is immediately proved once it is real- grpitrary. Here, let us use this one: at titalthough objects
ized, as remarked in Sec. VIIA, that minimizing the poten-j anq; that are in contact effectively touch each other at a
tial energy is a convex optimization proble(see property 1 jifferent point, define a bond to exist betwedy(t) and

sta;ed in S;ac. xll A. | le of Fig. 10 d Aji(t), oriented byn?j , Which, because objects do not rotate,
ust as for the simple example of Fig. 10, floppy modeSg gy carried by the common normal direction to the sur-
can exist in stable equilibrium configurations. Thus the sysz ..o i andj at these two points. This structure might be

tem V\II<|” resp”ond t§|aStI(;ai||]]y to ﬂsmall Ioag |ncAr\emIe.nts thatused to define virtual, fictitious bond forces, that we choose
provoke small motions ot tnese Tloppy modes. Applying suc qual to the initial equilibrium contact forces, i.¢;;, car-

load increments amounts to slightly deforming the potentia ied by ”i(} in the bond betweer, (t) and A, (t). These

energy Iands_cgpe on _th(_—} manifold of Conflgur_a'qons t.hagorces are now used in the theorem of virtual work, with the
maintain the initially existing contacts. A new minimum is

found, close to the previous one. Systems of rigid cablesreal velocities. This is perfectly valid, because for ea¢h)

whatever the level of deformatipehould therefore possess Eﬂg E)/g:\l:jalb:;\t/%giilaaoc;?etsh:?cla?cr:]gee;ztratecdogigznsttit?(?ugl
exactly the same kind of elasticity, due to preexisting b q

stresses, as assemblies of rigid frictionless particles withou.}P the opposite of the force exerted pn
One obtains

cohesionwithin the ASD(whose mechanical response to load
increments was discussed in Sec. VIIE

Those properties were in fact discussed by Alexander W’(t):z fijnﬂ-[Vj(t)—Vi(t)],
[40], in his monograph on the elasticity of various kinds of =<
networks and amorphous systems, in the case when the con- . 0
tact law iselastic Alexander pointed out that stable configu- the Sum running over all bonds. Agnj; does not depend on
rations are not necessarily rigid. He stressed that forcel this is easily integrated. Denoting &;(t) the vector of
carrying bonds or contacts always have a stabilizing effecrigin Ajj(t) and extremityA;;(t), the net variation of poten-
when they transmit a traction, and a destabilizing one whefal energy at time from the beginning of the motion is
they transmit a compression. Our present study here might
b_e_ regarded as complementary to his, since we deal with W(t)—W(O)zE f.n0. Ui (1). (8.1)
rigid contacts. = T

load for which it was specifically designeghny amount of
friction, however, stabilizes the system.
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This is equal to upper boun¢b.4); hence the equalitc
=2d. However, for frictionless grains with different shapes,
or for spheres with cohesion, one cannot in general expect
inequality (6.4) to hold as an equality, even on the backbone
alone.

Returning to cohesionless packings of spheres, when each
one is submitted to an external force, it has to belong to the
force-carrying backbone, and the whole system satidfies
=N; (or, asymptotically for large sizes,=2d). This hap-
pens in systenA treated without resorting to the ASD. The
. force-carrying structure that was obtained, SA2, is isostatic
5 and spans the whole system. When external forces are trans-

-t mitted from the boundary, as in systen floppy modes can
nol U(t) <0 exist, typically as isolated spheres, like disks 10 and 14 in
ijc Y Fig. 2(b), or small sets of spheres, that are not connected or

insufficiently connected to the backbone. In not too widely
polydispersed systems of spheres, regions that are totally
shielded from force transmission are usually quite small. Ac-

) ) ) cording to our experience in numerical simulations, if the
In the motion,A;;(t) andA;i(t) are still extreme points of radio of the largest to the smallest radius is 2 in a polydis-
solidsi andj in the respective directions;; and —nj;. A perse assembly of disks, then one very rarely sees more than
spheresi andj have stayed in contact, it follows that, as three disks together in such regions. In 2D, ringlike arrange-
shown on Fig. 14, the contribution of bomet j to Eq.(8.1)  ments surrounding disks that carry no force, such as 29-30-
is strictly negative, unlesg;;(t)=A;;(t), in which case itis  31-15-6-5-13-28 and 11-3-9-22-23-24 in Figb® cannot
zero. The same conclusion holds true for a contact betweengasily be made very large: the curvature of the “ring” would

spherﬁ and a flat wall that does not rotate. Consequently, oRen decrease, increasing the risk of inward buckling.
must have

FIG. 14. Sketch of the position at timeof two spheres in
contact.

2. Lattice models with and without the ASD

W(t)—W(0)<0, The triangular lattice model as defined in Sec. IV B, of
which systemg\ andB are particular samples, provides vivid

unless all intergranular contacts that carry nonvanishingX@mples of the difference between tensile contgytstems
equilibrium forces are maintained, in the motion, via the®f Strngs, satisfying Eq(3.3] and compressive ongsigid
same material points. This latter condition means that th@rains obeying Eq(3.1)], once dealt with outside the ASD.
backbone of the contact structure in the equilibrium configu-WVithin the ASD, both types of system share the same prop-
ration moves as a rigid body. erties, and an equn.lpru.Jm state of one of them can be
Mechanisms that affect only grains that do not carry ammapped onto an eqwhpngm ;tate of the other, as fo!lows. In
force, without altering the geometry of the backbone, wil the reference state, ”_g'd disks do not touch, 5}"‘??
not, of course, change the value \Wfand lead to instabili- = (&/2)(6i+ &;)a>0. This can be mapped onto a string net-
ties. Otherwise, the instability is always present. We havevork system, in which the contact law (8.3), on replacing
shown thathe backbone of the contact structune a stable €ach & by —& and attributing the lengtha[1+ a(4;
equilibrium configuration of a packing of rigid, frictionless * 9j)/2] to the string joining andj. On reversing the sign of
spheres that do not support tensile forces in the conticts, external forces, an exact correspondence is achieved between
devoid of mechanisms other than rigid body motidnsk,. ~ equilibrium states.
As we already knew, from Sec. VI, that it cannot possess Figure 15 shows the force-carrying structure, as obtained
self-balanced contact forceb0), one reaches the conclu- Within the ASD, in a hexagonal sampléor one random
sion thatit is an isostatic structure choice of §; values, drawn according to a uniform distribu-
tion) of 1141 disks. This system is submitted to an isotropic
pressure via an imposed homogeneous shrinking of the pe-
rimeter. As established in Sec. VIIB, such a structure is,
1. Coordination of packings within the ASD, dependent only on the random parameters
. - . . . 6. The dynamics ruling the motion of the particles from the
The isostaticity of the force-carrying structure in packingsyeference to the equilibrium positions and the actual value of

of rigid frictionless sphereswith contact law(3.1) thus re- 510 ot jrrelevant. In the corresponding system of strings

sults from a stability analysis. The opposite inequality to theg,\,mitted to isotropic tension, exactly the same force pattern

ones established in Sec. VID can be stated in this case: ORE Jbtained at equilibrium. We denote & the backbone of

hasN=N;, and consequenthiN=N¢, on the backbone of o contact structure, as displayed in Fig. 15. Just as in struc-
the contact structure. For large systems, the absence re SB1, which carries the force in a similar sample of

floppy mode implies sower boundon the coordination num- smaller size, many disks do not belong3b, which contains
ber: only 619 of them, thus possessing 1239 degrees of freedom
(counting the one of the “wall}. Many floppy modes are
c=2d on the backbone. present; 381 of them are associated with bond alignments

C. Consequences and discussion
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FIG. 15. Triangular lattice model, within the ASD: force- FIG. 17. Structure ST that replaces SC for an analogous system
carrying structures* in a hexagonal sample submitted to an isotro- of cables resisting tension.
pically compacting load. Linewidths are proportional to force inten-
sities. The very same structure is observed in a corresponding As expected, SC is devoid of mechanisms: it is an isos-
system of strings undergoing isotropic tension. tatic structure, with 1052 disks, 2105 degrees of freedom,
and exactly 2105 contacts. Only 89 grains out of the total
(disks having two contacts in Opposite posmbnand the number 1141 dO not belong to SC. Most Of them are iSOlated

remaining five are more collectiidike the one of Fig. 5  grains, or pairs of neighboslightly larger regions shielded
Some statistical properties 8fstructures in the large system from the forces appear near the perimeter, due to a boundary
limit were studied in15]. effect. . _

We numerically determined force-carrying structures in  On the other hand, ST stays more tenuous, with 840 disks
the rigid disk system under compression, and in the corre@nly, and 1401 contacts. Thus 280 floppy modes still exist on
sponding system of strings under tension, without the ASDST, 232 of which are simple bond alignments and 48 are
Those structures that were obtained with 1/48 (this value ~ collective. . N
is now relevantare respectively denoted as SC and ST, and In spite of these differences between the densitieS*of
shown in Figs. 16 and 17. Slight distortions of the regularSC and ST, it does appear in the figures that the spatial
triangular lattice, although not apparent on the figures, Weré“St“bU'“OnS of the forces are very similar, the strongest
taken into account in the calculations. From Sec. VII, we' force chains” remaining unaltered. The distributions of
know that ST is still determined only by the system geom-force values ir§* and SC in the limit of large systems were
etry: since forces are the solution to a convex optimizatiorevaluated in Ref[15] and shown to coincide, within statis-
problem, the uniqueness property still holds. This is not thdical uncertainties, except for the small forces that appear on
case for SC, and the result now depends on the actual dy%C in the additional contacts created by the buckling insta-
namics(the rule that was adopted to move the disks to theifilities in S*. Thus, resorting to the ASD is quite a legitimate
final equilibrium positions The calculation was carried out Procedure, provided is small enough to allow one to regard
with the “lubricated granular dynamics” method of Refs. the differences between SC or ST on the one hand,Sind
[15,9. on the other as refinements that can be neglected.

In the limit «— 0, any contact force on SC is expected to
tend to its value ir§*, although the density of force-carrying
contacts is discontinuous. In the system of strings under ten-
sion, on the other hand, mechanisms do not lead to instabili-
ties, and the density of the backbone itself should continu-
ously approach that &&* asa—0.
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We have seen that it is necessary to examine questions of
stability beyond the ASD, to find qualitative differences be-
tween intergranular contacts that resist compression and

() ’.‘Z‘e‘u«%’ ”\““‘#.5: “;0 cables that resist tension, and between spheres and other
“.‘ Tl shapes. Of course, one expects macroscopic properties of

granular assemblies to smoothly depend on grain shape:
packings of nearly spherical grains will resemble packings of
spheres. Experimentally, it has sometimes been observed that
systems of spheres, in a quasistatic experiment, yield particu-
FIG. 16. Structure SC that replacg$ ouside the ASD in the larly noisy responses. It is also empirically known in civil
case of contacts resisting compression. engineering that granulates made of smooth and rotund par-
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ticles, like river-bed gravel, are especially unstable and prone pq
to large plastic deformations. Unfortunately, detailed data at

the microscopic level on nonspherical grains close to equi-

librium are scarce.

Although detailed analyses of such features are lacking,
and our study of granulate stability should be extended to the
case of spheres with friction, one might speculate that such
particular behaviors of rotund objects could be related to the
specific property we have established here: whenever some p
motion is smoothly initiatedi.e., with a very small initial
acceleration while existing force-carrying contacts are
maintained, then it will entail some loss of potential energy,
and thus accelerate further. Hence probably the jerky aspect
of system trajectories in configuration space.

Section IX discusses, precisely, when and how a system
jumps from one equilibrium state to another.

PYYYYVYY
REERERY

IX. MECHANICAL RESPONSE TO LOAD INCREMENTS: p+q

TOWARDS MACROSCOPIC BEHAVIOR FIG. 18. The triaxial experiment.

So far, we have mainly dwelt on mechanical properties of

model granular systems. Those can be proved directly. Wg . |t + d the lateral o ( Fig. 18 A
wish now to discuss possible macroscopic consequences Ing equal ip~+q and the lateral one Ip (See Fig.
typical experiment consists in gradually increasgqgt con-

terms of the constitutive laws that are relied upon in a con anto. O th b th i trains. The cl
tinuum mechanics description. We thus have to infer some ofrantp. ©ne may then observe the resulting strains. The clas-

the properties of granular packings in the limit of large SyS_S|cal elastoplastic constitutive laws that are applied to granu-

tems. To be quantitative, some statistical knowledge of théa: rtnatetzrlals are |r(1jcr<;3m_entf:1jl_, WTllchbmteans d_thtatththe_zy do nott
geometry of large granular systems is needed, which requirég ate stresses and strains directly, but predict Ihe incremen

experiments or numerical simulations. Here, as we do no stratm tretsult:cn?h from tan Anc:jerpey;_t of ?trers]g,hglvgr;]tthe
present new experimental or statistical studies, we shall focurrent state 0 € sys e'(“.] € definition ot which mig
require other, “internal” variables Cycling forces of small

cus on qualitative properties, extrapolating from the charac-

teristics of finite systems we have been presenting so far, arfynplitude usually yield loops with some amount of hyster-

exploiting some recent numerical results, especially those ofors N the_stre.ss-strqm plane. The S””‘?‘C‘? area of such a loop
Ref.[17], recalled in Sec. VI B8, asOABO In Fig. 19 is the plastically dissipated energy as-

gociated with deviatoric stressé® which the work due to
volume changes has to be added to get the total plastic

nd depends on two parametgrsand g, the axial stress

Some macroscopic aspects of granular mechanics are r
called in Sec. IXA. Possible origins of plasticity are dis-
cussed in Sec. IXB, in relation to grain-level characteristicswork)' . . _ _

Section IX C examines some consequences of the strong iso- In marked contrast with classical soil mechanics ap-
staticity property of systems of frictionless spheres WithoutproaChes’ some authors recently proposed a new type of
cohesion, in which case some response functions to load in- q A

crements are related to the opera@rdefined in Sec. Il in [ c

relation to Eq.(2.12), corresponding to the isostatic struc-
ture. Section IX D exploits the results of R¢1.7], deriving

the form of the macroscopic equations to be solved when a
small load increment is applied. Finally, these results are
compared, in Sec. IXE, to some other approaches and theo-
ries, which have been put forward by several authors in the
recent literature, at both the microscop@3—-35 and the
continuum[11-14 levels.

A. Macroscopic granular mechanics: Known features, 0 iz
conflicting models
A classical way(see, e.g., Ref.19]) to study the macro-

scopic mechanics of granulates is to submit a sample to a
triaxial test. Such a device is designed to impose a uniform
state of stress throughout the sample. It does not matter, for
our discussion, whether this macroscopic stress is imposed

via a fluid pressing on a flexible membrafes in a labora- B
tory apparatus, for lateral confinemgnor via control of the
position of a rigid wall(as in some numerical simulations FIG. 19. Schematic aspect of response to cyclic variatiorgs in

We just need to remember that a varying load is imposedpn the €,,-q plane.
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macroscopic mechanical description for the statics of granu- [ L E '
lar packingg11-14. According to them, resorting to strain s .
variables should be avoided and one should look for direct
relationships between the components of the stress tensor, ¢
that it is possible to determine the whole stress field in a - T
granular sample by solving hyperbolic second-order partial
differential equations. These, like wave equations, posses
characteristics, preferred directions along which they reduce
to simpler, first-order forms. To solve the problem, one may 0.6 Q,=Q —
integrate along the characteristics that emerge from even® | 4
point where some external force is applied. Consequently, ir
a packing in which the forces exerted on the top boundary - T
(wall or set of particlesare known, a perturbatiofexternal
force incrementwill propagatedownward, but will not be
felt above the point where it is applied. The exact relation
between stresses to be used should then depend on the actt
process by which the sample was made. If the current stres |
level is changed, by, say, a manipulation of the boundary X,
conditions, as in the triaxial test, then the granular system ! —t
rearranges until the new constitutive relation, corresponding —08 —0.45 —04
to its new state, agrees with the new externally imposed X
stress values. These theories, in their current state of devel-
opment, do not predict the extent to which the system has Be
rearrange, or, in other words, the magnitude of the ensuing
strain increment. It has recently been propo&s] that iso-
staticity could justify such theories for frictionless assem-
blies of grains. These suggestions are discussed in Sec. IX
below.

We now turn to a discussion of some possible micro-
scopic origins of plastic dissipation.

04 —

FIG. 20. Loading paramet&@=F,/F, versus coordinate of
mobile disk of the system of Fig. 9.

may monitor the abscissa of the mobile disk,which, as
%resented in Fig. 20, is related to loading parameder
=F, /F, via a steplike function. In analogy with this problem
of rigid grains, one may build a system of rigid cables-
sisting tension, but not compressjpwhich, if treated within
the ASD, yields exactly the same simplex of accessible con-
figurations, the same optimization problerR;§, as that of
Fig. 8. This system of cables is shown in Fig. 21. Node 1 is
When a given supported external load places the systemow tied to 2, 3, and 4 by cables that are slightly longer than
in a uniquely determined equilibrium state, one has to expedhe common distance between 2 and 3 and between 3 and 4.
a mechanical behavior devoid of plastic dissipation. Hyster- Outside the ASD, the potential minimization problem for
esis loops like those of Fig. 19 cannot occur. Plasticity isthe system of cables is no longer a linear optimization prob-
related to the lack of uniqueness of equilibrium states. At thdem, but, according to the general properties discussed in
level of continuum mechanics, it is sometimes termed “in-Sec. VIII, it is still a convex problem. In the plane of the
ternal friction,” since the material behaves as if different coordinates of node 1, the simplex of Fig. 8 changes into a
layers of matter slid on one another with friction within the domain limited by curved faces, as shown in Fig. 22. The
bulk of the sample. We have thus identified two microscopiccurvature of the faces being oriented inward, this domain of
origins of internal friction in systems of frictionless grains accessible configuration is convex.
(1) bounded tensile forces in the contats in Sec. VI, When the orientation of forc€ is such that, in Fig. 22,
(2) rearrangements of finite extefite., the ASD is no longer the direction of constant potential energy lines lies between
valid) between equilibrium position of assemblies of spheri-those of tangents to the accessible domaiiand B, the
cal grains. equilibrium position is a point on arsB, and only one cable
Let us illustrate these different behaviors on the simple
example of Fig. ASec. VI Q. Starting from an equilibrium
configuration in which the external force on disk 1, in con-
tact with 2 and 3, is vertical, let us gradually increase its
horizontal component,. We first discuss the problem
within the ASD. It is then a particular example &% dis-
cussed in Sec. VII, a linear optimization problem with two
unknowns(the coordinates of disk)1In fact, the simplex
within which potential energyV has to be minimized is ex-
actly the one that was shown in Fig. 8. PoiAtandB in that
figure are, respectively, the equilibrium positions of the cen- |G, 21. System of cables equivalent, within the ASD, to the
ter of disk 1 when it is in contact with 2 and 3, and with 3 system of disks of Fig. 9, with the same values of external forces.
and 4. Changes from one position to the other happen wheRere, the cables joining 1 to 2 and 3 are taut, while the one joining
the direction off is orthogonal to that of segmeAiB. One 1 to 4 is not.

B. Origins of plastic dissipation
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FIG. 22. Minimization problem in the plane of coordinates of  FIG. 24. Same as Figs. 8 and 22, in the case of the system of
node 1, for the system of Fig. 21 without the ASD. The accessibldrig. 9, without the ASD. The continuous straight lines are the tan-
part of configuration spad@utside the hatched zonis convex. Its  gents to the boundary curve at poi#sandB.
boundary has sharp corner& @ndB), but, unlike in Fig. 8 corre-

fsponding to the same problem within the ASD, displays curvatureiensior) outside the ASDThe accessible domain in the co-
in between. Tangents to that curve/agndB are drawn. ordinate plane is, as opposed to the previous cases, no longer

convex, as shown in Fig. 24. The upper lind, of the Q

is taut, the one joining 1 to 3. In this case, the motion alongnterya| for which positiomA is stable is now larger than the
arcAB is a mechanism, but stability is maintained, just as ingwer limit Qg of the Q interval for which positionB is

the example of Fig. 10. There is still a one-to-one correspongiapie. Because of thisistability for Qg<Q<=Q,, the Q

dence betweeQ=F,/F, andx, as shown in Fig. 23. As the grssx relation now exhibits hysteresis, as shown in Fig.
difference between cable lengths and distances 2-3 and 3

decreases, displacements get smaller and smaller. The differ- 'AS shown in Sec. VIC, contact la.5), which allows

enceQg—Q, tends to zero, the curvature of the accessible,, some hounded tensile forces in the contacts, is such that
region boundary in Fig. 22 vanishes, and the curve of Fig. 23,n, equilibrium positionsA and B will be simultaneously

approaches the ASD case, Fig. 20. Over a finite interval bepossible for some values @, in the system of Fig. 9Q then

tweenQ, and Qg, the force-displacement relationship is ayaries withx exactly as shown in Fig. 25, witR,=1/y3

smooth function, unlike the stepwise dependency shown N ¢ JF, andQg=1/y3—f,/F
Fig. 20 (corresponding to the limit of very small motions Co)neymay nzte, howev?ar, fhat the plasticity due to cohe-

Let us now deal with the system of Fig. (Jith rigid, ; - ) )
. . _ .sion of fini rength differs from the on metri
impenetrable disks and frictionless contacts that do not reS|sStO ° te strength differs from the one due to geometric
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FIG. 25. Same as Figs. 20 and 23, in the case of the system of
FIG. 23. Force ratiadQ versus coordinate of node 1 for the Fig. 9 outside the ASD. The force-displacement relation is now
system of Fig. 21, without the ASD. history dependent, as shown by the arrows.
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rearrangements in the two following respedis. With con-  k, corresponding degrees of freedom from the) ligtike-
tact law (3.5), plasticity does not disappear in the limit of wise, 1<I<N here labels only the force-carrying contacts
small motions(when the ASD becomes val)id2) It is sen-  (N=Nj).

sitive to themagnitudeof external forces, not only to their

direction The figure analogous to Fig. 25 in theQ( 1. Response to perturbations, without rearrangement

=F,/Fy,x) plane now depends on the valuefef. When Isostaticity of the whole structure means that matéix

F, is very much larger tharfy, the cohesive strength of and its tranpos&" are square and have an inverse. Not only

contacts can be neglected and vanishes as a source of plasie equilibrium forces, given the load, uniquely determined,

dissipation. but it is also possible to predict how small external force
On going from the elementary example dealt with in thisincrements(on the backbonewill be distributed in the ex-

section to larger and larger systems, it might be expected thasting contacts. Changing the load froni’F;iX‘)lgMgNf to

curves like Fig. 25, forceflike F) averaging to stresses and (Fi“+ z‘SFi"‘)KMSNf will result, in contactl, in the force

displacementdlike x) to strains, will gra_dually Iqok like E|g. incrementsf, , given by

19. In larger systems, the curve of Fig. 25 will look like a

staircase. Presumably, as the system size increases, the num- _(~T\—1grext_ ~—1gext

ber of the steps, and their amplitude, if expressed in terms of of|=(G'),, 6F =G, 6F, 9.9

intensive quantities, will tend to zero. Then the smoothnes

of the curves sketched in Fig. Tight be recovered in the The backb boi aid. this ch in f d ¢
thermodynamic limit. Whether it actuallyill is of course 1€ backbone being r|g|_, 'S change in forces does no
entail any displacementi,=0 for eachu. This correctly

not obviousa priori; a careful statistical analysfg9] is re- escribes the mechanical response of the aranular assem-
quired. In the case of systems treated within the ASD, eac P - granulk ;
lage as long as all contact forces remain positive. This

step of the resulting staircase will be retraced back and fort Lhould be the case. in a finite svstem. for sufficiently small
without any irreversibility. Such models can be expected to ’ Y ' y

share the properties of the lattice system of R&f] and perturbations of the initial load.
Sec. VII B8, in which the staircase does indeed approach a
smooth stress-strain curve in the thermodynamic ligBut
this curve is unique; one cannot obtain Fig. 19 in such a Parallel to the one-to-one correspondence between contact
case) forces and external loads expressed by @ql), is the in-

The difference between plasticity of cohesive and noncoversible linear mapping between velocities and relative nor-
hesive grains that was pointed out above is reminiscent afal velocities in the contacts. There is no compatibility con-
the difference in the behavior, under growing hydrostaticdition in the absence of hyperstaticity, and one may impose
pressure, of sands and clayid]. As the magnitude of the arbitrary values on relative normal velocitie&\,) ;< <y for
load increasegbut its direction is fixedl the level of plastic the whole list of contacts. The resulting velocities of the
deformation in the cohesive materi@lay) is much higher spheres are then
than in the noncohesive orgsand.

It is also interesting to note that some theories of friction V,L:G;|15V| 9.2
between solid surfacdd8] are, just like the mechanisms for
internal friction that we invoke here, based on the history- ﬁgummation ovel implied). On comparing to Eq(9.1), it

dependent selection of one among several possible stab . 15
equilibrium configurations. appears that the same matrix elem@&}” is equal both to

the force increment in contatttreated when a unit external
force is exerted on the coordingte on the one hand, and to
the velocity coordinatg. whenéV is equal to 1 in contadt

We focus here on systems of frictionless, cohesionlessand to zero in all other contacts, on the other hand. Such a
and rigid spherefthe contact law bein@.1)] in equilibrium  symmetry in response functions was remarked by Moukarzel
under a given load, for which it was shown, in two steps[34], who derived it by different means.
(Secs. VI and VII) that the force-carrying backbone is an
isostatic structure. We discuss some specific consequences of 3. Response to perturbations: Structural rearrangements
this property. In the simple example treated in Sec. IXB just
above, both equilibrium configuratios and B correspond
to isostatic contact structures, and it is easy to predict fo

?summation over repeated indices implied

2. Dual response of velocities to bond length variations

C. Consequences of isostaticity

The particular form of mechanical response expressed by

Fq. (9.1), in which no motion occurs and the load increment

which value of the loading parameters the system will's supported by the |n|t|aIIy_ existing contacts, ceases to be
relevant as soon as negative contact forces appear. In the

change from one to the other. Exploiting the isostaticitycase of a two-parameter loadina mode. such as the biaxial
property, we will show here that such a prediction can, to P 9 '

some extent, be done in an arbitrary system. ;axper'lmgn't. alt C?nStaEI in which q is graduallyr:ncrea;sd
In this subsection, we consider only the backbone, ignor-rom its initial valueq=0, one may write in each contakt

ing the rest of the system. We suppose that grains have been

renumbered, so that indgx, with 1<u<Ns, labels only fi=Bip+va,

the degrees of freedom of objects that belong to the back-

bone. We shall also adopt the convention that the wholevhere 8, and vy, are, due to isostaticity, geometrically de-

backbone does not move as a rigid bdthus excluding the fined coefficients. In general one finds that some ofjthare
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negative. Let us denote &s the set of such contacts. The that possess some macroscopic meaning, such as changes of
load will no longer be supported as soonseaches the ¢ in a biaxial experiment. Then, assuming to fix notation that

value g is increased from zero, two cases need to be considered.
Either the thermodynamic limit of|,,.,, as defined in Eq.
Uas= min_—y'p 9.3 (9.3, is positive, or it is equal to zero. In the first case, there
max B ' exists a finite interval of stress for which no motion occurs in

leL™ . .. . .
° the continuum limit, and the mechanical response discussed

For largerq’s, the theorem of virtual power shows that it is in the preceding sections in terms of the sole ma@iis
possible to decrease the potential energy upon opening orf@acroscopically relevant. In the second case, the granular
contactl, for which the minimum in the right-hand side of material might be appropriately terméwgile, since, in the

Eq. (9.3 is reached, all other contacts remaining closed. Théhermodynamic limit, arbitrarily small macroscopic perturba-
system will then rearrange, until a new set of contacts idions provoke rearrangements of the contact structure. Thus,
created, such that the new loggl, ) is supported with posi- any macroscopic mechanical experiment involves displace-
tive contact forces. If one uses the ASD to describe thignents; the sole knowledge of one network of contacts that
motion, then, within this approximation, the new list of con- corresponds to a given value of the loading parameters is not
tacts, as shown in Sec. VI, is entirely determined by thesufficient. The response expressed by the ma@rialone is
system geometry alone, as the solution to a simplex problenilot the macroscopically relevant one.

Outside the ASD, the new equilibrium state after the system Our simulations of frictionless rigid disk$17,50,49
rearranges might depend on specific dynamical laws. In gershow that such systems are indeed fragile in this sense.
eral, the range of validity of the ASD and the influence of the

dynamics are to be tested in experiments or, perhaps more 5. An algorithm to compute a sequence

easily, in numerical simulations. However, we have just of equilibrium configurations

shown, in fact, thathe direction of velocities at the begin-

ning of the rearrangemeris determined by purely geometri- This suggests the following procedure to determine the

s ) S . sequence of equilibrium states reached by an assembly of
pal cpndmons, atleast I is unique: to find those directions, rigid, frictionless, cohesionless spheres under varying load
just imposesV, ;=—1 (thus opening contadi) and 6Vi ;o ‘without resorting toany dynamical parametewith-
=0 for anyl#l,, from which all velocity components are oyt introducing any inertia or mechanism of dissipation
deduced as,=—G, 7, from Eq.(9.2. (1) Starting from an equilibrium configuration, increase
Simulations of disordered systems of digl&®)] suggest the loading parameter until the contact forcef,0 vanishes.
thatl, is generically unique, except in situations when the (2) Move grains in the direction determined by the open-
opening contacts involve a cluster ofi{ 1)-coordinated ing of contact o, the others remaining closed. Keep the same
spheres ird dimensions. Examples of such clusters are setgrescription for the grain trajectories as for the initial veloci-
of disks 8, 19, and 2, or 6 and 15, or 12 alone in Fig) 2t ties, taking into account the rotation of vectarg, until
is easily realized that once one contact force involving, e.g.some new contadt is created, such that the new contact list,
disk 8 is known, then all contact forces involving disks 8, 19,replacingl, (now open by |, defines an isostatic structure.
or 2 are also known, and proportional to the first one. Thus, (3) If, in the new contact structure, the contact forces that
they all vanish simultaneously. This means that all matrixbalance the load are all positive, a new equilibrium state,
columns G;ll)lslust are proportional to one another for corresponding to the new load, has been reached: one may
all indicesl that label contacts ad-spheres belonging to the go back to stegl) and further increasg. Otherwise, some
same (1+1)-coordinated cluster. Returning to the determi-contact forces are negative. Pick up the one with the highest
nation of the motion when the load ceases to be supported bgnsile force, call it , and go back to stef?), with the new
the initial list of contacts, it follows that, even though in such contact list.
a case several contacts involving the same clusterdof ( This algorithm has been implemented by G. Combe and
+1)-coordinated spheres may simultaneously open, ththe present authdb0]. We propose to name it the “geomet-
uniqueness of the initial velocities, up to a common ampli-fic quasistatic method{GQSM). It does involve arbitrary
tude factor, is preserved for all spheres that do not belong tihgredients: there is no reason to forbid other openings of
the said cluster. contacts once intersticla,o has reached a finite positive
value. Its great advantage is the possibility to compute tra-
4. Fragility jectories from the sole knowledge of the system geometry.

When a rearrangement occurs after a load increment, the The system evolution, under a varying load, appears as a
mechanical response of the granular assembly, unlike the orggduence of equilibrium states that are separated by
expressed by Eq9.1), involves both force changesd dis- “Jump§” or rearrangements, in wh|ch 'thg list of active con-
placements. It depends on the possibility of closing contact!acts is altered. In a phase of equilibrium, the forces are
that are not present in the initial equilibrium configuration. carried by a minimum list of contacts. In a phase of motion,
This geometric information is not contained in mati
which depends only on the network of initially existing con-
tacts. One could thus study a second type of response tfThe fragility property is in fact contained in the results stated in
perturbations, which involves displacements. To see whiclsec. VIIB8, as any stress increment, however small, that is not
of the two kinds of response is more relevant for the macroparallel to the preexisting stress entails some additional strain in the
scopic mechanical behavior, one has to impose perturbationsermodynamic limit.
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normal relative velocities, among the whole bond list, arerelative normal displacement is negativéu|0<0, while
localized onone bond (several if a structure—a list of 5, =0 for eachl #1,. Therefore, becaus€® <0, one has
bonds—Iarger than the contact structure is consigeiath 0

maximum localization phenomerzaie related to geometric 5W=—f|(°)5u, <0.

constraints. o 0

The predictions of the GQSM algorithm were compared .
with those of other methods that resort to dynamical modelsOn the other hand, one may obtaiW by applying the theo-

(and, as argued in the Introduction, also involve arbitraryrem of virtual w_ork 0 Structur&,. As (_:ontacﬂl has _closeo_l,_
nonphysical features The results will be presented else- the corresponding relative normal displacement is positive,

where. As mentioned above, mechanical properties, at th@41, <0, while du=0 for eachl#1,. Therefore, because
level of individual trajectories in configuration space, cannotoW= —ff11)5u|l<0, one has
be expected to be uniquely determined outside the ASD.
However, in view of the important role of the geometry, f|(11)>0-
which determines exactly the value of the loading parameters
for which the system should rearrange and the direction ofrhus the new contact structure supports the load with posi-
the initial velocity vector, it can be hoped that the statisticaltive contact forces as soon @s>0,.x, and a new stable
properties of such trajectories that are relevant for the macequilibrium state has been reached.
roscopic laws will present little dependence on dynamical |n the general case, we stressed the difference between the
features of the systertsuch as masses or dissipative shockmechanical response of the granular system without rear-
laws). rangement, which can be deduced from the geometry of the
contact structure via matrig, and the mechanical response
6. Rearrangements within the ASD involving some rearrangement, the determination of which
L L o requires some additional prescriptigeuch as that of the
Within the approximation, as the equilibrium state COITe-G0SM) to move the particles. This difference is much less
sponding to a given load is unique, there is no need to resoﬁtnportant within the ASD: as the matricé pertaining to

to an incremental approach. If one does so, however, then thgiher structure do not change in the motion, all displacement
whole rearrangement event is geometrically determined. Itoq dinates will simply be found as follows:

can be computed with the GQSM as presented above. Then,

it will be observed, on performing ste) of the algorithm, ' u,=h, Gt (9.4)

that the new contact structure, as soon as a new contact is S N

created, supports the load with only positive contact force

Thus, unlike in the general cafg0], no cascade of succes- . .

sive rearrangements occurs in st@. Rearrangements are Matrix G is that of structures,.

simpler events in which one element of the contact structure E9uations(9.2) and (9.4) differ only by a scale factor,

is replaced by another. |nterst|ceh|l. There is nothing especially singular in the dis-
Let us prove this statement. L& denote the old list of tribution of open interstices in dense granular systems at

contacts andS; the new one. Both structures are isostatic,equilibrium. So it can be expected that macroscopic averages

and for any given load one can find unique values of bottrorresponding to both response functid@<2) and(9.4) are

sets of bond forcesf(), es, and (f)), es, that ensure equilib- proportional to one another. Moreovgr, the response without

rium. In the following, members of these two sets, in order to'éarrangement, expressed by E92), is the same with and

distinguish them, are written down with a superscrif) ~ Without the ASD.

andfl(l)’ respectively, denote the force carried by boras In the followmg subsection, we Qenve epr|C|_tIy the form.
. of the macroscopic response function to small increments in
computed with structureS, andS;.

Recalling also the notation of the preceding paragraph applied external forces, in the case of the triangular lattice
. . i £ model. Th re lar le aver mbination
is equal toS,, deprived of contacky, to which contact; is ode ese are large scale averagecombinations of

. . microscopic responses expressed by Ey4). We shall
added. When the valugpax of the loading parameter is therefore speculate that the results to be derived below, for

0 .
r_eached,f,o has decreased to zero. This means that, exCeRpe form of such macroscopic Green's functions, are also
tionally, the smaller structurg\{lo}=S,\{l,} can support valid for the average of response functions without rear-
the load, and one has(’, while f(Y'=f(® for eachl  rangements in general.

e So\{lo}. As we assume, for simplicity, that contact forces
reach zero separately, there exists a finite range of positive D. Macroscopic response of the triangular lattice model

incrementsag such that one haf’ <0, while f{*>0 for In the model system studied in Réfl7], the results of

| € S\ {lo}, for =amaxt 69. Likewise, reducing théq in-  which are recalled in Sec. VIIB8, it is possible to find the

terval if needed, we require the conditidiy?>0 for | form of macroscopic equations to be solved when a small

e S\ {l4}. density of external forcesf®*! is superimposed over an ini-
We now pick up one such value of and evaluate the tial equilibrium state. To do so, one just needs to translate the

variation W of the potential energywhich corresponds to properties stated in Sec. VII B 8 into incremental form.

this value ofq) in the rearrangement. On the one hand, one First, let us impose, without loss of generality, a few con-

may obtainsW by applying the theorem of virtual work to ditions on functiorf defined in Eq(7.12. It is convenient to

structureS,. As contactl, has opened, the corresponding choose a symmetric function ef,; andeg,,, the derivation

Swhere h|1 denotes the initial opening of contagt and the
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in Eq. (7.13 being taken regarding both strain components We have seen that it might be viewed as a linear operator

as independent variables. Then, definingeispace a norm
lell by
l€l*=€: €= €31+ 2€3,+ €55,
one may enforcéreplacingf by f/||Vf|) the condition
IVE[=1, (9.5

everywhere or®.

within the space of symmetric second-order tensors that are
orthogonal tog, or, in other words, within the tangent plane
to surfacey in strain space. Because of the strict convexity
of D, this operator igositive definitgthis is easily realized,
as the curvature ak is turned inwargl

Transforming the equilibrium equation into one for the
unknownsu and S\ using Egs(7.10, one obtains

One starts from an equilibrium state in which the stress(&a denoting a derivative with respect to coordinagewhile

field is ¢, which is assumed to stay
ported range defined by inequaliti€s9), everywhere in the

system. This initial state is also characterized by a displace-

ment fielduy and a strain tensor field [everywhere o,
and abiding by Eq(7.13], the origin being defined by the
reference staté&he undisturbed regular lattice of spaciap
One then looks for the stress increment figld, displace-
ment increment fieldu, and strain increment fielde that
result from the application off®*', The problem is dealt with

strictly inside the sup-he gisplacement field should satisfy

9.7)

Equationg9.6) and(9.7) supplemented by suitable boundary
conditions define arelliptic boundary value problembe-
cause of the positive-definiteness of operaofhe solution

is unique provided two conditior(& 2D) involving u and/or

its normal derivatives are specified everywhere on the system

(Taﬁ(?ﬁua=0.

to first order in any of these quantities, which are linear inboundary.

of$Xt assumed small.
Let us define

A 5°f
apyo J€qpl€ys’

a fourth-order tensor that depends @nOne has, upon dif-
ferentiating the macroscopic law

of
afaﬁ,

O-C(ﬁ:)\

the decomposition of stress increments as

60 4= 50’% + 50'(52 ,

with

50'(;[3:

)\Aaﬁygaf,y&
(summation over repeated indigemd 5o )= S\ o 5.
Condition (9.5) yields by derivation

of

Ausrsge

:O’

whence the orthogonality betweenand 5o(%). Sincee must
remain on%, Je is also orthogonal ta.

We now turn to the situation when the initial stress field is
a uniform hydrostatic pressure:

O-CYB: PO(SaB ’

with a position-independent pressuPg. One may redefine
function f so thatA coincides withP, in such a case. The
corresponding tangent space3Xas then the space of trace-
less tensors.

In general, tensoA reflects the common symmetries of
the material(the triangular latticeand the stress tensor. In
this particular case, it will possess all the symmetries of the
regular triangular lattice. The tensor of elastic constants in
that caseg51] has the same symmetries as in an isotropic
medium. Because it operates within the space of traceless
tensors, tensoA reduces to a scald: one has, for any
traceless strain increment,

Aaﬁy56675: Kﬁeaﬁ .
Equation(9.6) has become
KPoV2u—V(8P)+ 5f'=0,

while Eq.(9.7) now states that the displacement field should
be divergenceless:

V.-u=0.

In view of the symmetry of the stress tensor and of theOne recognizethe Stokes problem for viscous incompress-

conditions imposed on functiof) tensorA satisfies the fol-
lowing symmetries:

Aa,Byb‘: Aﬁa‘y§: Aaﬁ&'y .

Because it is a second-order derivative, one also has

Aapys=Aysap-

TensorA is thus endowed with the same symmetry proper-

ties as a tensor of elastic constas of viscosity coeffi-
cients.

ible flow, the displacement replacing the velocity field and
the productkK P, playing the role of the shear viscosity.

Green'’s functions for the Stokes problem can be found,
e.g., in[52]. In an infinite 2D medium, the velocity field
varies logarithmically with the distance to the point where a
concentrated force is applied.

E. Discussion

From the results just above, it can be concluded that the
form of the macroscopic equations ruling the displacement
field created by a small perturbation to a prestressed granular



PRE 61 GEOMETRIC ORIGIN OF MECHANICAL PROPERTIE. .. 6833

sample in equilibrium should be elliptic, provided the micro- triangular lattice model that the list of force-carrying con-
scopic rearrangements are dealt with within the ASD. Fromacts approaches a limit that comprises all the bonds parallel
the discussion at the end of Sec. IXC 6, we expect that opto two of the three lattice directions, and none of the bonds
eratorG ™1, in the general case, also averages macroscopparallel to the third. The topology of the backbone thus ap-
cally as the Green's function of an elliptic second-orderproaches that of a square lattice. In this particular ¢a5¢
partial-differential operator. One may obtain a suitable macit is easy to check that a description in termdafce propa-
roscopic average on taking, e.g., the mean of all matrix elegation, involving hyperbolic equations, applies. The margin-
mentsG;,l for which the vector pointing from bonldto the  ally supported stress states of this model are the analog of the
center of the grain to which coordinagtebelongs is in some Coulomb condition for an isotropic medium. When the Cou-
prescribed small neighborhood of a given vector. lomb criterion is everywhere satisfied as an equality, the ma-
G~ ! rules the response without rearrangement. Theerial is everywhere on the verge of plastic failure, and it has
general—and, in view of the fragility property, most long been knowriand exploited for the evaluation of critical
relevant—case of mechanical response involving rearranggoads|[53]) that the macroscopic equations are of the hyper-
ments outside the ASD appears to involve more geometrigolic type. This situation has been termed “incipient failure
information than the one contained in matf it was ob- everywhere” (IFE) in [12,13.
;erved[SO] that step(_3) of the GQSM algorithm introduced One may conjecture that deposition algorithfg,55
in Sec. IXCS5 could involve a long sequence of elementaryyijj systematically produce internal states close to IFE. Spe-

rearrangements replacing one contact by another. Unlike th&ficajly we expect sequential deposition under gravity to
distribution of open gaps between adjacent particles, one %sult in the “active” Rankine state, in which the pressure

the magnitude of such complex rearrangements is quite Wid8n the lateral walls is barely sufficient to contain macro-

and might significantly affect the macroscopic response Ir]scopic plastic flow of a horizontal granular layer sumitted to

terms of dispacements. This will be studied in a forthcomingi s own weiaht. In the case of disks with a small or moderate
publication. In the case of a disordered granular assembly, n6 : gnt. o . )
polydispersity in 2D, the deposition algorithms do in fact

small parameter, like the level of polydispersity of disks in g ks of f . tacts that
the triangular lattice model, is available to control the valid-P09Uc€ networks of force-carrying contacts that are very

ity of the ASD. As found in Sec. VIII, stable equilibrium close to the limiting sta.tes of the triangular lattice mogel
states of frictionless disks or spheres are especially scarce fifformed square lattige Therefore, we suspect that
configuration space, as full rigidity is required. Outside the Tkachenko and Witten's arguments apply only to those par-
ASD, impenetrability constraints do not limit a convex ac- ticular cases of limit states or IFE.
cessible domain of configuration space. Whereas the route Apart from the arguments put forward [85], there are
from one equilibrium state to another, within the ASD, canother aspects in which the general properties we have been
be straight, it might have to follow a long and tortuous pathdiscussing as well as the numerical results obtained on the
outside the approximatiofThe ASD amounts to simplify- triangular lattice model appear at odds with the assumption
ing this complex geometry, straightening up local curvaturesof a direct relationship between stress components and re-
etc) lated theories. Leaving a more complete discussion to subse-
Interestingly, Tkachenko and WittefB5], following a  quent work, let us merely point out that the nature of the
suggestion by Alexanddr0], speculated tha@s a conse- boundary conditions has dramatic effects if the macroscopic
quence of the isostaticity propertjhe mechanics of friction- equations are hyperbolic. In fact, if a rigid boundary trans-
less sphere packings should be described at the continuumitting a stress is replaced by a distribution of external
level by laws of the type proposed in Ref42,13: the re-  forces imposed independently on the grains that are close to
sponse to perturbing force fields satisflegerbolicpartial  the edge, such theories predict this change to significantly
differential equations. From consideration of the floppyaffect the whole systerfwhich has lost its rigidity. In our
modes that appear within a subsystem that is isolated frorexperience[9,18], some rearrangement does occur, but its
the rest of the sample, they derived a similar directionaleffects are confined to a boundary layer of finite depth.
structure for matrixG ! as for the macroscopic response in ~ We also note that our results disagree with some of
such theories: in a sample limited by a free surface in thévioukarzel's[33,34], predicting perturbations due to a local-
upward direction, force perturbations are not felt above thézed force to increasexponentiallywith distance. Although
point where they are introduced. his results are very accurate and were obtained on very large
Although we do not venture here to speculate on the fornsystems, thepropagativenature of forces, which can be cal-
of macroscopic equations that rule the mechanical responsmilated from “top” to “bottom” in a single sweep, is an
with rearrangements in a general, disordered system fasxplicit ingredient of his model, which was adapted from the
which the ASD might not be valid, our conclusions above doone of[32]. Our results on the triangular lattice model dis-
go far enough to clearly contradict the ones[85], since  agree with his because this very large effect of force pertur-
those are concerned with the same objeperatorG ). An bations[or, equivalently—see Eq$9.1) and(9.2—of bond
explanation for this discrepancy could be that Tkachenkdength variation$ would cause the level of distortion of the
and Witten mainly based their conclusions on the observaregular lattice, due to the polydispersity of disks, to increase
tion of packings(numerically obtained by sequential depo- very fast with the system size. Rather, we observed it to
sition algorithms under gravity. approach a finite thermodynamic limit. Once again, we sus-
When the stress tensor approaches the boundary of thmect that the very peculiar properties obtained in these stud-
region of supported loadse., when one of the conditions in ies stem from the consideration of a special case in which
Eq. (7.9 is almost an equaliyone can observgl7] for the  forces happen to possess a propagative nature.
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Finally, the (provisiona) conclusion we propose here, as structure must be rigid if contacts do not withstand tension,
already mentioned in Sec. VIIE, is that the rigidity of the because any floppy mode would imply instability. This en-
grains and the isostaticity property do nmcessarilyentail  tails that the force-carrying backbone in systems of rigid
very special, critical, or singular macroscopic mechanicakpheres is, generically, an isostatic structure; its coordination
properties. Moreover, we expect—as systems dealt witmumber is equal to@ in dimensiond. Analogous systems of
within the ASD exhibit the same kind of elasticity as net- cables(which resist tension but not compressioon the
works of rigid cables—that if unusual, exotic properties ex-other hand, will generally keep some amount of floppiness,
ist, then they are related to the displacemétits rearrange- since mechanisms in the equilibrium state are all stable.

ments rather than the network of forcdsr the operatoiG Assemblies of frictionless grains will, in general, exhibit
attached to jt internal friction, due to the multiplicity of stable equilibrium
states corresponding to the same external load. This non-
X. CONCLUSION AND PERSPECTIVES unigueness might stem from the finite extent of rearrange-

ments or from bounded cohesion forces. If submitted to
Let us first briefly summarize the main results presentedowly varying loads, packings of rigid grains will evolve via
in this paper. Specializing to frictionless grains, and assuma succession of jumps or crises separated by phases of rest.
ing that granular packings, under slowly varying loads, tendrhe isostaticity property implies, for a system of rigid fric-
to stable equilibrium states, we have shown that geometrjionless spheres, that the concentration of forces is maximal
determines, to a large extent, the mechanical behavior aluring a phase of resforces cannot be carried by a strictly
such materials. smaller set of contacktsand that the concentration of defor-
Spatial arrangements of granular packings in equilibriummation is maximal at the beginning of a junfihere cannot
under a given load are quite specific points in configuratiorexist a strictly smaller list of interstices in which relative
space. Rigid grains that exert only normal contact forces omormal velocities are not equal to zgro
one another, once submitted to a supported load, will generi- Although the motion in a rearranging event depends on
cally pack in such a way that the problem is isostatic, i.e.the actual granular dynamics, the forces during a phase of
there is no indeterminacy of forces. The value of all contactest, and the direction of velocities at the beginning of mo-
forces is determined by equilibrium equations and the geomtion, are geometrically determined.
etry of the contact structure. This yields a rigorous upper Two kinds of response functions to force increments can
bound on the contact coordination number of any packing obe studied, depending on whether the perturbation provokes
rigid grains. These properties hold for compressive or tensil@ change in the contact list. Some recent studies of response
contact forces. Contact structures, in equilibrium, are not alfunctions, without rearrangement of the grains, were dis-
ways rigid, especiallybut not exclusivelyin the case when cussed and we argued that some of their conclusions might
contacts can sustain tensions. Even if loose particles, whiche specific to sequential deposition models, in which forces
carry no force, are discarded from the count, the upper boundan be propagated along a preferred direction. The fragility
on the coordination number might not be reached. of frictionless granular assemblies in the thermodynamic
If the packing is such that the approximation of smalllimit implies, however, that macroscopically meaningful per-
displacements might be well justified, in particular in theturbations always involve some amount of rearrangement.
case of regular arrangements on lattices, stronger properties The results of the present article suggest both general per-
were established, provided the problem can be coped with iapectives and specific problems, to be dealt with in future
the framework of convex optimization theoryvhich re-  work. An important feature of granular materials is the spar-
quires the definition of a potential energy, thus excludingsity, in configuration space, of equilibrium configurations.
finite strength cohesionThen (1) not only the forces once These, especially for rigid grains, have very specific charac-
the contact structure is known, but the force-carrying structeristics. Moreover, they are generally suitable doe par-
ture itself is entirely determined by the system geomdfy. ticular load. In such circumstances, it might not be adequate
Grain positions are also determined, apart from possibl¢o first choose one specific geometric arrangement and con-
“floppy mode” motions, of bounded amplitude, that do not tact structure, built, e.g., by some convenient algorithm that
affect the value of the potential energ{d) Displacements respects impenetrability conditions, atiten apply external
from the reference configuration on the one hand@ondact  forces and see how they could be balanced by contact forces.
forces on the other handre the solutions to two optimiza- The list of active contacts is itself chosen according to the
tion problems in duality(4) For rigid grains, force-carrying external load. Many recent studies have been devoted to the
structures are the exact analog of cost-minimizing directeavay forces distribute among a fixed list of contacts, and to
paths in scalar transport problems. the ensuing statistics of contact force values. Although mod-
Such situations are thus very attractive from a theorist'ls along these lines might captiwsemeof the physics, they
point of view: the reduction of the mechanical problem toignore displacements. Displacements, as our results have am-
one of random geometry is complete, and analogies witlply shown here, are always part of the problem. The very
other models of theoretical statistical physickrected per- definition of a force requires the consideration of some
colation, directed polymers in a random environmeain be  amount of displacement. A normal reaction force in the fric-
drawn and exploited. However, some important features ofionless contact between two rigid objects is a geometrically
granular mechanics are absent: such systems are devoid @é¢fined quantity, a Lagrange parameter associated with an
plasticity and hysteresis. impenetrability constraint in configuration space. Large as-
Pursuing the stability analysis beyond the ASD in the cassemblies of frictionless rigid grains are fragile: tiny load in-
of disks or spheres, we have shown that the force-carryingrements will be associated with rearrangements of the con-
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tact structure. If one wishes to understand the macroscopimeans. In the presence of friction, granular packings are also
mechanical behavior of granular systems and its relationshipbserved, in experiments and dynamic numerical simula-

to grain-scale phenomena, the question oftegnitudeof  tions, to evolve by a succession of crises localized in time.

such rearrangements, in which the system moves from oné/e expect the geometry of the assemblage to dictate, to a
equilibrium state to another, is crucial. large extent, the way such sudden motions are initiated.

Other, more specific questions, that are related to statistics It can be concluded that many of the promising prospects,
and the continuum limit, naturally follow from the mechani- as well as many of the difficulties ahead, in the study of
cal properties we have been presenting. When is the ASD mechanical properties of granular materials close to equilib-
good approximation, apart from lattice models? Are the sameium, are in the understanding of the disordered, yet quite
states periodically revisited in cyclic solicitations? What will peculiar, geometry of large systems that adapt their contact
be the density and the effect of floppy modes in systems ofietwork to sustain the load.
nonspherical frictionless particles? Will the staircaselike Note added in proofThe word “simplex” is rather im-
stress-strain curve approach a smooth limit when the systeproperly used in this article, instead of “polyhedral convex
size increases? To what extent are rearrangements sensitiset.” We thank J. J Moreau for pointing this out.
to the actual dynamical rule? Such problems would benefit
from careful numen(_:al s!mulatlons,_and we shall address ACKNOWLEDGMENTS
some of these questions in forthcoming publications.

The treatment of granular systems with friction could be The author wishes to thank J.-P. Bouchaud, X. Chateau,
tackled with a similar approach to the one developed hereE. Clement, G. Combe, P. Dangla, M. Jean, J. Jenkins, J.-J.
one could investigate the range of stability of a given contacMoreau, S. Ouaguenouni, F. Radjai, J. Rajchenbach, and J.
structure, as the load gradually varies, by purely staticSocolar for stimulating contacts and conversations.
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