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Geometric origin of mechanical properties of granular materials
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~Received 18 January 2000!

Model granular assemblies in which grains are assumed rigid and frictionless at equilibrium under some
prescribed external load, are shown to possess, under generic conditions, several remarkable mechanical
properties, related to isostaticity and potential energy minimization. Isostaticity—the uniqueness of the contact
forces, once the list of contacts is known—is established in a quite general context, and the important distinc-
tion between isostaticproblemsunder given external loads and isostatic~rigid! structuresis presented. Com-
plete rigidity is only guaranteed, on stability grounds, in the case of spherical cohesionless grains. Otherwise,
the network of contacts might deform elastically in response to small load increments, even though grains are
perfectly rigid. In general, one gets an upper bound on the contact coordination number. The approximation of
small displacements that is introduced and discussed allows analogies to be drawn with other model systems
studied in statistical mechanics, such as minimum paths on a lattice. It also entails the uniqueness of the
equilibrium state~the list of contacts itself is geometrically determined! for cohesionless grains, and thus the
absence of plastic dissipation in rearrangements of the network of contacts. Plasticity and hysteresis are related
to the lack of such uniqueness, which can be traced back, apart from intergranular friction, to nonreversible
rearrangements of small but finite extent, in which the system jumps between two distinct potential energy
minima in configuration space, or to bounded tensile forces, deriving from a nonconvex potential, in the
contacts. Properties of response functions to load increments are discussed. On the basis of past numerical
studies, it is argued that, provided the approximation of small displacements is valid, displacements due to the
rearrangements of the rigid grains in response to small load increments, once averaged on the macroscopic
scale, are solutions to elliptic boundary value problems~similar to the Stokes problem for viscous incompress-
ible flow!.

PACS number~s!: 83.70.Fn, 05.40.2a, 45.05.1x
n
u
cu
ee

-

se
a

in
n

h
ns
re
ig
d

e-
ar

ry
t
n
st

is
ns

ave
s-
els
ra-

hing
ten-

or

te
ms,
lar
that
s-
tes

e on
en-
ys-

ork
-
the
s,
in
e
f
qui-
e-
dy-
I. INTRODUCTION

A. Motivations

A large research effort, in both the statistical physics a
the mechanics and civil engineering communities, is c
rently being devoted to granular materials, aiming in parti
lar at a better understanding of the relationships betw
grain-level micromechanics~intergranular contact laws! and
macroscopic behaviors~global equilibrium conditions, con
stitutive relations! @1–3#. This aim—the traditional program
of statistical mechanics—is far from fully achieved in den
granular systems near equilibrium, for one is facing at le
two fundamental difficulties.

First, the nonsmooth character of contact laws that
volve unilaterality and, possibly, dry friction is a commo
feature of granular assemblies which endows them wit
high level of disorder and a high sensitivity to perturbatio
Tiny motions might significantly affect the way forces a
transmitted, since contacts between neighboring grains m
open or close~and the sliding or nonsliding status of close
ones might change!. Hence the characteristically heterog
neous aspect of force transport in dense granulates: l
forces are carried by a network of preferred paths~the ‘‘force
chains’’! while some grains or sets of grains carry only ve
small forces~‘‘arching effect’’!. The histogram of contac
forces spans a wide range. These phenomena have bee
perimentally observed thanks to techniques like photoela
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stress visualization@4,5# and carbon paper print analys
@6,7#. They have also been studied in numerical simulatio
@8,9#, and some attempts at theoretical descriptions h
been proposed@10#. Such peculiar aspects of granular sy
tems render more difficult the reference to existing mod
from other fields. Indeed, a recent trend in the physics lite
ture on static granular systems@11–14# insists on their dif-
ference from ordinary, elastic solids, and suggests searc
for direct relations betwen the components of the stress
sor, instead of resorting to macroscopic displacement
strain variables.

The second basic difficulty stems from the incomple
knowledge of the mechanical properties of granular syste
especially those ruling the dynamics. When a granu
sample is submitted to some prescribed external actions
are sufficiently slowly changing in time, its evolution is cu
tomarily described as an ordered set of equilibrium sta
that are successively reached, with little or no dependenc
physical time. The physical processes by which kinetic
ergy is dissipated are, however, most often somewhat m
terious or poorly characterized. They are, in the framew
of the quasistaticdescription we have just mentioned, im
plicitly regarded as irrelevant. One might wish to assess
validity of such an assumption. Numerical simulation
which have to adopt some rule to move the grains, could
principle allow useful investigations of the influence of th
dynamics. However, in view of the practical difficulty o
obtaining representative configurations close enough to e
librium within a reasonable computation time, they som
times resort to nonphysical parameters, and pick up the
6802 ©2000 The American Physical Society
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PRE 61 6803GEOMETRIC ORIGIN OF MECHANICAL PROPERTIES . . .
namical rule among the restricted range of those that al
tractable calculations.

This paper addresses both those basic concerns, in
following way. Simplifying assumptions are introduced~we
consider, e.g., rigid frictionless grains!, thus restricting our
attention to a certain class of model systems, which, h
ever, are argued to exhibit the same qualitative behavior
more realistic ones. Those systems are suitable candidat
test, most easily by numerical means, some recently
posed models and speculations, at the expense of rathe
tensive numerical computations. The purpose of the pre
article is not, however, to present new results of numer
simulations. We shall state and establish, rather, with a
level of generality, some basic properties of such syste
and study their qualitative consequences in terms of ma
scopic mechanical behavior. This analysis will shed so
light on some analogies with and differences from other p
viously studied problems in statistical mechanics, such
directed ‘‘polymers’’ in random environments and perco
tion models. It will also, along with the exploitation of pa
numerical results on a simplified model@15,9,16–18#, allow
us to investigate the possible origins of some macrosco
features of granular mechanics, which are classically m
eled with elastoplastic constitutive laws@3,19#, and to dis-
cuss other recently proposed approaches@11–14#.

We will show that mechanics is to a large extent det
mined by geometrical aspects~steric exclusion!, thus par-
tially answering concerns about the role of dynamical para
eters. Finally, we will discuss the status of displacement
strain variables in quasistatic assemblies of rigid grains
give perspectives for future investigations.

B. Synopsis

The paper is composed of two main parts. First, Se
II–V introduce useful definitions and state basic propert
that are necessary for the derivation of the main resu
Thus, Sec. II presents useful definitions and mechan
properties of static granular systems, i.e., collections of ri
bodies essentially interacting via point forces mutually e
erted on their surfaces. Those notions, which include
theorem of virtual power, generalized forces and velocit
for collective degrees of freedom, and the degree of inde
minacy of forces and velocities, are not always familiar
the condensed matter physics community. Section III int
duces potential energy minimization problems for vario
simple frictionless contact laws. Section IV defines the
proximation of small displacements, a modeling step of b
technical and conceptual importance, since it allows, in p
ticular, an analogy with problems of scalar transport on d
crete networks, as explained in Sec. V.

Once those essential ingredients are made available
second part of the paper~Secs. VI–IX! establishes the main
results and discusses their consequences, with referen
previous theoretical and numerical work, and to known
pects of the mechanical behavior of granular materials. S
tion VI is devoted to thegeneric isostaticity propertyof
equilibrium states in systems of rigid grains that may ex
only normal contact forces on one another. We then pr
and discuss~Sec. VII! theuniquenessof the equilibrium state
in cohesionless systems within the approximation of sm
w
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displacements, and compare the determination of equilibr
states of such systems with other mechanical or scalar tr
port problems. Section VIII introduces the additional r
quirement of stability, outside the approximation, which
dealt with, in the absence of friction, in terms of potent
energy minimization. In some restricted models, this allo
one to prove that the structure is isostatic, a stronger prop
than mere isostaticity of the problem under a given load. I
then possible to discuss the possible origins of plasticity
systems of frictionless grains and the form of the mechan
response to small load increments. The paper ends with
cluding remarks~Sec. X! on the role of displacements an
strains in granular materials and suggestions for future
search.

II. BASIC DEFINITIONS AND PROPERTIES

We are interested in the modeling of large packings
solid bodies~grains! in equilibrium under some prescribe
external forces. Grains are assumed to interact via p
forces mutually exerted on their surfaces, which means
the distribution of stress on their areas of contact or of infl
ence can effectively be viewed as localized at a point, on
scale of the whole grain. Apart from this reservation, whi
excludes flat or conforming surfaces,1 grains might have ar-
bitrary shapes, and our considerations apply to spatial dim
siond equal to 2 or 3, although most examples will be tak
from two-dimensional systems of disks. Note that we do
require interacting grains to touch one another at this sta
We mostly restrict our attention here tofrictionlessbodies,
i.e., such that contact forces are normal to the grain surfa
This might look like a severe limitation, but we shall argu
that such simplified systems do possess the generic pro
ties of granular media. We shall also assume, unless ot
wise specified, that the grains behave as rigid undeforma
objects.

A. System, external forces

We consider a set ofn grains, labeled with indicesi, with
1< i<n. In each of them we arbitrarily choose a ‘‘center
which might, e.g., coincide with its center of mass. In t
case of spherical grains it is of course convenient to take
geometrical center of the sphere. The (d-dimensional! ve-
locities of those centers, (V i)1< i<n , together with the
d8-dimensional @with d85d(d21)/2# angular velocities
(Vi)1< i<n , make up the kinematic degrees of freedom
the whole system, thus labeled by couples of indices (i ,a),
with 1< i<n and 1<a<d1d85d(d11)/2. Wedenote as
I the set of such couples. Ifa.d, Vi ,a is now a notation for
V i ,a2d . Boundary conditions are often enforced by prescr
ing the motion, or the absence of motion, of walls. Tho
might be regarded as solid bodies or particular ‘‘grain
themselves. In the following we shall sometimes write do
large ‘‘velocity vectors’’ that gather allNf kinematic degrees
of freedom of the system, then denoted with a single index
(vm)1<m<Nf

.

1Our considerations do apply, in fact, to flat surfaces, provid
face to face contacts are countedd times ind dimensions, as they
transmit one force andd21 torques.
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6804 PRE 61JEAN-NOËL ROUX
It might also be convenient to keep some grain coor
nates fixed~thus choosing one particular Galilean frame!,
i.e., to impose, for all couplesi ,a belonging to some subse
I 0 of I, Vi ,a50. The indicesm are then renumbered, andNf
is reduced accordingly, to label and to count the free ki
matic parameters. Another classical way to impose so
boundary conditions is to require, for alli ,a in some subse
I 1 of I, Vi ,a to depend linearly on one or several paramete
e.g.,

Vi ,a5Ai ,al1 , ~ i ,a!PI 1 , ~2.1!

introducing some collective ‘‘generalized velocity’’l1.
Once again, in such a case,Nf is reduced to count elemen
of I\(I 0øI 1), plusl1.

At least locally, it is possible to regard velocities an
generalized kinematic parameters@like l1 in Eq. ~2.1!# as
time derivatives of spatial coordinates, which we shall do
the following, thus writing, e.g.,Vi ,a5dXi ,a /dt. As we are
interested only in those properties that do not depend
dynamics, grain trajectories might as well be described
any parameter, not necessarily by physical time. In the c
of kinematic constraints of type~2.1!, parametersAi ,a will
be regarded as fixed, although positions of the grains and
walls change. One then defines a generalized coordinateL1,
such thatdL1 /dt5l1. Just as for velocities, the compa
notation (xm)1<m<Nf

refers to the whole set of positiona
coordinates.

External forces and torques may at will be exerted on
grains that are free of kinematic constraints. We shall use
same notations as for velocities, writing down lar
Nf-vectors of ‘‘external forces’’~some of their coordinate
standing, actually, for torques!, as (Fm

ext)1<m<Nf
. At equilib-

rium, they are of course to be balanced by internal for
(Fm

int)1<m<Nf
:

Fm
ext1Fm

int50 ~1<m<Nf !. ~2.2!

In order to enforce constraints of type~2.1!, some external
efforts have to be exerted on the bodies concerned. On
quiring the power of such efforts to be balanced by that
internal forces (Fm

int)1<m<Nf
, one identifies the generalize

force conjugate tol1 as

Q152 (
( i ,a)PI 1

F ( i ,a)
int A( i ,a) . ~2.3!

We just used the power to find generalized forces: this
manifestation of theduality between forces and displace
ments or velocities, which will be repeatedly exploited
what follows. TheNf-dimensional vector spaceF of external
forces, is, by construction, to be regarded as the dual sp
in the ordinary sense of linear algebra, of theNf-dimensional
spaceV of kinematic degrees of freedom.

In general, it should be appreciated that the appropr
mathematical description of configuration space is notRNf

with its Euclidean structure, but, due to rotational degree
freedom, anNf-dimensional manifold, on which (xm)1<m<Nf

is a set of~local! curvilinear coordinates.V and F are, re-
spectively, the tangent and cotangent vector space at a g
i-

-
e

s,

n

n
y
se

he

e
e

s

e-
f

a

ce,

te

f

en

point and depend on that point. Thus the definition of ‘‘co
stant velocities,’’ or of ‘‘constant forces’’ requires som
care. However, these difficulties are inessential in our sub
quent treatment, and we shall assume that ‘‘constant exte
forces’’ are applied, and derive for the potential energy

W52 (
m51

Nf

Fm
extxm . ~2.4!

It is easily checked that such a definition is devoid of am
guity in the following important cases.~1! The set of grain
center positions, as opposed to grain orientations, defin
‘‘flat’’ space, on which constant vectors and covectors a
unambiguous. Whenever external efforts are not sensibl
orientational coordinates, as in the case of gravity~if the
grain ‘‘centers’’ are their centers of mass!, one may therefore
‘‘apply constant forces.’’~2! Anticipating Sec. IV, the ap-
proximation of small displacements assumes that the m
fold might locally be replaced by its flat tangent space.

The completeNf-vector of external forces is referred to a
the load. Sometimes, it is convenient to deal with param
etrized sets of loads. When the direction of the load is fix
while its intensity might vary, one has aone-parameter load-
ing mode. In such a situation, all external force componen
are kept proportional to a single loading parameterQ, and a
generalized velocity conjugate toQ, l, can be identified on
equating the power of the external forces with the prod
Ql. l is some linear combination of the kinematic degre
of freedom (vm)1<m<Nf

, and the time derivative of a gene

alized coordinateL, equal to the same combination of coo
dinates (xm)1<m<Nf

. The potential energy is then simply

W52QL. ~2.5!

Let us now illustrate these notions with simple exampl
which will be repeatedly used in the following. SystemsA
andB are packings of disks that are placed on the sites o
regular triangular lattice.~Later on, we shall allow for a
slight polydispersity of the grains. They might move, gain
lose contacts with their neighbors, and the lattice might
slightly distorted!. SystemA ~Fig. 1! is a pile with slope
inclined at 60° with respect to the horizontal direction. Ea
disk is submitted to its own weight, except those of the b
tom row, which collectively set the boundary condition. O

FIG. 1. SystemA: a pile under gravity. The bottom boundar
conditions are explained in the text.
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PRE 61 6805GEOMETRIC ORIGIN OF MECHANICAL PROPERTIES . . .
might keep them fixed at regularly spaced positions, imp
ing, say~numbering them as on the figure, and denoting aa
the lattice spacing!,

xi5~ i 21!~12L1!a, yi50 ~1< i<8!, ~2.6!

allowing for a horizontal deformation parameterL1. One
may also require them to stay on the horizontal axisy50
and satisfy

v i
y52l1~ i 21!a, ~2.7!

with a free kinematic parameterl1. According to Eq.~2.3!,
the generalized force conjugate tol1 is

Q15(
i 51

8

Fi ,x
int~ i 21!a. ~2.8!

These two slightly different boundary conditions~BCs! are
respectively abbreviated as BC1 and BC2 in the followin

SystemB @Fig. 2~a!# is a hexagonal sample of the sam
material. It is submitted to external forces on the periphe
which mimic hydrostatic pressure. SystemC @Fig. 2~b!# is a
disordered collection of disks with a larger polydispersity

FIG. 2. ~a! SystemB: a hexagonal sample. Arrows depict exte
nal forces applied on peripheral disks.~b! SystemC: a disordered
packing surrounded by a circular wall that might uniformly expa
or shrink, as indicated by the small arrows.
s-

,

t

is embedded within a circular wall the radiusR of which
might change. One controls the generalized force conjug
to l15dR/dt, viz.,

Q15(
i

f iw , ~2.9!

where the sum runs over all particlesi exerting forcesf iw
normally onto the wall.

B. The structure: a set of bonds

The definitions we introduce here pertain to one spec
configuration of the grains, with the positions and orien
tions fixed.

We call ‘‘bonds’’ the pairs of neighboring grains thatmay
exert a force on one another. We require this force to
concentrated at the point of each grain that is the closes
the other one, and directed normally to the surface.2 The
more general case of arbitrary bond forces will be brie
evoked later.

Note that we neither require the grains that are joined
a bond to be in contact, nor impose any sign constraint on
force. We thus define, somewhat arbitrarily at this stageN
such bonds as depicted on Fig. 3, alternatively labeled w
an index l, 1< l<N, or with the pair of labels of the two
grains they join. If bondl connectsi and j, nl or ni j denotes
the unit vector that points fromi to j, normally to the sur-
faces of both grains where the distance between them,hi j , is
the smallest.Ri j is the vector joining the center of graini
~origin! to the point on its surface that is closest to grainj
~extremity!. This contact zone might transmit anormal force,
along ni j , of magnitudef i j that will be counted positively
when the grains repel each other. Once this set of bond
defined, it is referred to as thestructure. The set of bonds

2This latter condition is not essential: the following properti
hold true provided the direction of the force carried by a bond
fixed.

FIG. 3. Two grainsi andj joined by a bond.hi j is the minimum
distance between their surfaces, measured where a common no
unit vector isni j . VectorRi j (Rj i ) points from the center ofi ~j! to
the point of its surface that is closest toj ( i ).
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6806 PRE 61JEAN-NOËL ROUX
defined by intergranular contacts (hi j 50) will be called the
contact structure.

As a consequence of the definition of a structure, the fo
of internal forces@(Fi

int)1< i<n# and torques@(Gi
int)1< i<n# in

the system is specified: they linearly depend on bond for
f i j as

Fi
int52(

j Þ i
f i j ni j ,

~2.10!

Gi
int52(

j Þ i
f i j Ri j 3ni j .

Given the load (Fm
ext)1<m<Nf

, equilibrium requires, in view

of Eqs.~2.10! and ~2.2!, that the bond forces (f l)1< l<N sat-
isfy equations of the form

(
l 51

N

Hm l f l5Fm
ext ~1<m<Nf !, ~2.11!

defining a linear operatorH:RN→F. Bond forces (f l)1< l<N
are then said to bestatically admissiblewith the load
(Fm

ext)1<m<Nf
. Bond forces that are statically admissible wi

a load equal to zero~in equilibrium without any externa
action! are the elements of a subspaceS0 of RN, the null
space of operatorH. Its dimension, which we denote ash, is
the number of linearly independent such self-balanced se
internal forces, or, in other words, thedegree of indetermi-
nacy of bond forcesin the system~also called thedegree of
hyperstaticity!. If not empty, the set of statically admissib
bond forces is an affine space of dimensionh.

The relative normal velocity of the grainsi andj joined by
a bond is

dVi j 5ni j •~V i2V j1Vi3Ri j 2Vj3Rj i !, ~2.12!

with the convention that it is positive when the particles a
approaching each other. Equation~2.12! defines a linear op-
eratorG acting onV into RN. Therangeof G is the subspace
C of compatible relative normal velocities, i.e., thos
N-vectors for which one can effectively find values for t
velocities, relations~2.12! being satisfied. Thenull spaceof
G is the vector spaceM of ‘‘mechanisms,’’ also called
‘‘floppy modes,’’ i.e., motions that do not alter the lengthshl
of the bonds. Its dimension, denoted ask in the sequel, is the
number of independent such motions, or, in other wor
regarding the bonds as rigid, thedegree of indeterminacy o
velocities, also called thedegree of hypostaticity. Imposing
the conditiondVi j 50 in all bonds of the structure restric
the possible values of velocities (vm)1<m<Nf

to a vector
space of dimensionk. Depending on the type of load an
boundary conditions, the whole set of grains might ke
some overall rigid body kinematic degrees of freedom. S
temB, for instance, has three independent such motions,
any solid body in two dimensions~2D!. If k0<d(d11)/2
denotes the number of such particular motions allowed
the boundary conditions, the structure is said to berigid
when it does not have other mechanisms, i.e., whenk5k0.

An important and useful result, the classicaltheorem of
virtual power states the following. Let (dVl)1< l<N be any
s

of

e

s,

p
-
e

y

element of C, corresponding to the velocity vecto
(vm)1<m<Nf

, and let (f l)1< l<N be a set of bond forces stat

cally admissible with the load (Fm
ext)1<m<N . One then has

(
l 51

N

f ldVl5 (
m51

Nf

Fm
extvm . ~2.13!

Equality ~2.13!, for an arbitrary~‘‘virtual’’ ! equilibrium set
of internal forces and velocities, stresses thegeometric
meaning of forces and themechanicalmeaning of velocities.
It is easily established in two steps: first use the force bala
equations on the right-hand side; then transform the s
over degrees of freedom into a sum over bonds.

As a direct consequence of the theorem, one deduces
operatorH is in fact the transpose ofG: H5GT @as one
might check directly, reading the matrix elements in E
~2.12! and~2.11!#. This follows from the sequence of equal
ties

~ f udV!5~ f uGv !5~H f uv !5~GTf uv !,

valid for arbitrary v ~such thatGv5dv) and f ~such that
H f 5Fext), in which a bracket notation is used for scal
products. Consequently,S0, the null space ofGT, is the or-
thogonal complementary toC, the range ofG, in RN:

S05C'. ~2.14!

Thus, to check that some valuesdVl that one might try to
assign to the relative normal velocities are compatible, i
sufficient to ensure the orthogonality ofN-vector
(dVl)1< l<N to all N-vectors of self-balanced bond forces~or
a spanning subset thereof!:

~dVl !1< l<N'S0 . ~2.15!

One thus usesforces~elements ofS0) as cofactors in a set o
geometriccompatibility conditions.

Recalling thatk ~the number of mechanisms! is the di-
mension of the null spaceM of G, one has

Nf5k1dim~C!.

As h5dim(S0), from Eq. ~2.14!, one also has

N5h1dim~C!.

Elimination of the dimension ofC from those two equalities
yields the following relationship between the degree of h
postaticityk, the degree of hyperstaticityh, the number of
bondsN, and the number of degrees of freedomNf :

N1k5Nf1h. ~2.16!

As we will check on examples below, relation~2.16! holds
whatever the choice of the list of bonds between obje
although it is of course desirable in practice to define bo
according to the interaction law. One may, for example,
clare a bond to join two grains whenever their surfaces
separated by a minimum distance smaller than some thr
old h0.0. The choice of a largerh0, thereby increasingN,
will decreasek and/or increase the degree of hyperstaticityh.
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Let us remark that the properties we have just dealt w
in the case of bonds that carry normal forces are very ea
generalized to the case of arbitrary contact forces, at the
of minor modifications. Relative normal velocities and no
mal contact forces are replaced byd-vectors,RdN replaces
RN, equalities~2.13! ~with, now, a scalar product within th
sum in the left-hand side! and ~2.14! are still satisfied. In-
stead of Eq.~2.16!, one ends up withdN1k5Nf1h. Add-
ing friction increasesh and/or decreasesk.

Returning to frictionless systems, the case of sphere
disks deserves a special treatment: no normal force is ab
exert any torque, and all rotational degrees of freedom
therefore mechanisms. It is convenient to ignore them a
gether. Their numbernd(d21)/2 (n is the number of par-
ticles! is then subtracted both fromNf and fromk, and Eq.
~2.16! still holds. Such granular systems are then analog
to ‘‘central-force networks’’: networks of freely articulate
bars, or systems of threads tied together, in which only
translational degrees of freedom of the nodes matter.
should be aware, however, that the presence of friction r
states rotations into the problem.

We now illustrate the notions and properties introduced
this section with examples of structures defined in systemA,
B, andC, ignoring, as explained just above, disk rotations

First consider systemB. Three different structures are ap
parent on Fig. 2~a!. The first one, which we denote as SB1,
the set of bonds that are drawn as thick lines; the seco
SB2, contains all bonds of SB1, plus those that are dra
with thin continuous lines on the figure; and, finally, the th
structure, SB3, comprises all possible bonds between ne
neighbors in the system, i.e., all those of SB2 plus the do
lines. Ignoring rotations, one hasNf52n538.

Structure SB3 is a set of rigid triangles sharing comm
edges with their neighbors. It is devoid of mechanisms,
cept the three overall rigid body degrees of freedom of
system. Thusk53. N542 bonds are present. In view of E
~2.16!, one hash57. One can exhibit seven linearly inde
pendent systems of self-balanced normal forces, as follo
The small structure, with 12 bonds, involving seven dis
depicted on Fig. 4, allows definition of one such set
forces. Noting that seven such patterns are present in
~centered on discs 5, 6, 9, 10, 11, 14, and 15!, the right count
is reached.

Structure SB2 is made ofN535 bonds. It can be show
~on studying the properties of the corresponding matrixG)

FIG. 4. A set of self-balanced normal forces. The six bonds
the regular hexagon perimeter carry some normal forcef, while the
six involving the central disk labeled 1 carry the opposite force
h
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B3

to be devoid of self-balanced sets of forces,h50, and of
mechanisms other than rigid body motions,k53. ThusN
1k5Nf1h.

Structure SB1, comprisingN525 bonds only, still hash
50. According to Eq.~2.16!, it should possess ten addition
independent mechanisms. Two of them are due to disc
which is now completely free. Four others involve disks 5,
12, and 19, which are still free to move in one direction.
the case of a divalent disk like 5, this is due to the ex
alignment, on the regular lattice, of bonds 4-5 and 5-6. F
less trivial mechanisms are more collective. One of them
shown in Fig. 5.

Two structures SA1 and SA2 are defined, on Fig. 1
systemA. SA1 is made of all bonds drawn with continuou
lines, and SA2 contains, in addition, the two bonds dra
with dotted lines ~19-24 and 32-34!. Depending on the
boundary condition, disks 1 to 8 possess collectively eit
one degree of freedom~for BC2! and thenNf557, or none
~for BC1! andNf556.

SA2 has 57 bonds. It is devoid of mechanism (k50) for
whatever BCs. For BC2, one also hash50 and Eq.~2.16!
holds as an equality between the number of bonds and
number of degrees of freedom. For BC1, one hash51. In-
deed, one may recognize, in the bottom left corner of
pile, with disks 1, 2, 3, 9 and 10, part of the hypersta
pattern of Fig. 4. With BC1, one need not care about eq
librium of disks 1, 2, and 3 which are perfectly fixed.
system of self-balanced bond forces is thus found on att
uting a common value to the normal forces in bonds 1
9-10, and 10-3, and the opposite value to the normal for
in bonds 2-9 and 2-10. In the case of BC2, these forces
not balance, since the equilibrium equation for the collect
degree of freedom of the bottom row@a combination of Eqs.
~2.8! and ~2.10!# is not satisfied. As to SA1, it has the sam
properties as SA2, with two additional mechanisms~collec-
tive ones like that of Fig. 5!.

Consider now structure SC that is shown, in systemC, in
Fig. 2~b!, with the lines connecting disk centers or joinin
disks to the wall that defineN570 bonds. Taking into ac-
count the degree of freedom of the wall, one hasNf52n
11575. One may showh50. Thus one hask55. Two
disks ~10 and 14! are entirely free; hence four mechanism
The missing one is a global rotation, as a solid body, of
set of all particles around the center of the circular contain
the wall remaining immobile. Such a motion would not b
possible if the same boundary condition was used with
other container shape.

f FIG. 5. A collective mechanism on structure SB1. Arrows re
resent disk velocities.
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C. The problem: The structure and the load

Once a list of bonds is chosen, thus defining the struct
we shall refer to the situation of the structure submitted t
given load as ‘‘the problem.’’ Solving the problem wou
mean finding the motion or equilibrium state of the syst
~determining, e.g., new equilibrium positions and intergra
lar forces!, once the load has been applied, from an init
state of rest with no external force. We are not, of cour
able to do that at this stage, since no contact law relating
forces to the relative motion of neighboring particles h
been introduced. The only information available is that
internal forces are required to belong to some vector sp
that is known once the structure is defined, and to be exe
on given points on the grain surfaces.

It is said thatthe load is supportedby the structure if its
application leads to an equilibrium state in which intern
forces, carried by the bonds of the structure, balance
external ones. We can state a necessary condition for
load to be supported: it must be possible to find statica
admissible intergranular forces. Necessarily, theNf-vector of
external forces must lie in the range of operatorGT, i.e., it
must be orthogonal to the null spaceM of G:

~Fm!(1<m<Nf )
'M . ~2.17!

This simply means that if the load is to be supported, it m
not set the mechanisms into motion. Such a load is said t
supportable. All supportable loads are not always supporte

By definition, thebackboneof a structure is the set o
bonds l 0 such that a list of statically admissible intern
forces (f l)1< l<N exists withf l 0

Þ0. In the following we shall
also refer to the set of grains reached by such bonds as
backbone.’’

In general, a full mechanical characterization of the eq
librium properties of the system requires some constitu
law in the contacts. However, there are interesting situati
in which ~1! condition~2.17! being fulfilled, the load is sup-
portable; and~2! if it is supported, then all intergranula
forces are uniquely determined by the equations of equ
rium. These two conditions define anisostatic problem.

Further restrictions on internal forces are often enforc
in the form of inequalities. The definition of a supportab
load is then modified accordingly, imposing additional co
ditions to be satisfied simultaneously with Eq.~2.17!. Their
consequences will be discussed in Secs. III and VII.

D. Isostaticity: Various definitions

In Sec. VI we shall see that equilibrium configurations
assemblies of rigid frictionless grains interacting via cont
forces only are generally such that the problem is isosta
Here, we first insist on the difference between anisostatic
problem, as defined just above, and anisostatic structure, to
be defined below. Once condition~2.17! is satisfied, the se
of possible bond forces is an affine space of dimensionh.
One has an isostatic problem if both conditions~2.17! and
h50 are fulfilled. Some mechanisms might still exist in t
structure (kÞ0), provided they are orthogonal to the loa
direction.

Structure SA1~Fig. 1!, with disks exactly centered on th
sites of a regular triangular lattice, is such that the probl
e,
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~denoted as PA1 in the following! defined with BC2 and the
load3

Fi
ext52pey ~9< i<36!,

~2.18!

Q15
294

5A3
p,

where p is the weight of one disk andey is the vertical
upward unit vector, is isostatic, although two mechanis
are present.

Analogously, structure SB1, along with the load shown
Fig. 2, defines an isostatic problem PB1 in spite of thek
510 mechanisms. In particular, the load direction~provided
disks sit right on the regular lattice sites! is exactly orthogo-
nal to the velocity vector represented in Fig. 5. Structure S
submitted to the load

Fi
ext50 ~1< i<37!,

~2.19!
Q15Q1

0 ,

where a prescribed valueQ1
0 is imposed on the generalize

force Q1 defined in Eq.~2.9!, yields an isostatic problem.
Isostaticstructures, on the other hand, are such that a

problems are isostatic, whatever the choice of the load. M
precisely, one requires all loads orthogonal to the ove
rigid body degrees of freedom to be supportable with
unique determination of internal forces. Equivalently, bo
conditionsh50 andk5k0 are to be satisfied. Both the de
gree of hyperstaticity and the degree of hypostaticity~ex-
cluding rigid body motions! should be equal to zero. Thi
entails the well-known condition

N5Nf2k0 , ~2.20!

stating that the number of equilibrium equations (Nf2k0) is
equal to the number of unknowns (N).

Equality ~2.20! is a necessary condition for the structu
to be isostatic, not a sufficient one. For example, in the str
ture defined by the addition of the bond joining disks 19 a
24 to SA1 with the first boundary condition~BC1!, one has
k050, N5Nf556, while h5k51. Structure SA2, with
BC2, is isostatic. SB2, withNf538 andk053, is isostatic.
As to SC, it would be isostatic upon removal of grains
and 14, only if the global rotation of the set of grains wi
respect to the wall were ignored. Of course, all those str
tures, as we are dealing with disks, are only isostatic if ro
tions are ignored. Only problems with no external torq
exerted on the grains are isostatic. This should be rem
bered on comparingh andk with and without friction in such
systems.

As we shall see, isostatic problems, rather than isost
structures, naturally occur in some model granular syste
The distinction is relevant, for it accounts for disconnect
or ‘‘dangling’’ parts in disordered structures like SC, and f
the peculiarities of lattice models. Moreover, some syste

3The load, in this case, is supportable if and only if 42p<Q1A3
<74p.
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as we shall see, can also spontaneously select a nonrigk
.k0) equilibrium configuration.

E. Generic versus geometric properties

The distinction between isostatic problems and isost
structures should not be confused with another one: that
tween geometricand generic isostaticity. We have used
geometricdefinition of a structure, as associated with o
particular position of the system in configuration space, a
accordingly the definition we gave is that of geometric is
taticity. A topologicalone can be introduced which, irrespe
tive of particle positions, is sensitive only to the connectiv
of the network of bonds. In the case of spheres or dis
when rotations can be ignored, this amounts to regarding
structure as a graph: a set of edges~bonds! joining at vertices
~grains!. OperatorG, spacesS0 andM, and their dimensions
h andk smoothly depend on the coordinates of the grains,
vectors ni j and Ri j . However, the rank of a paramete
dependent matrix stays at its maximum except for spe
values of the parameters. Equivalently, the dimension of
null space is generically equal to its minimum value. App
ing this to bothG andGT, one may define the generic degr
of indeterminacy of velocities~with due account to thek0
rigid body degrees of freedom! k and the generic degree o
indeterminacy of forcesh as the respective generic~mini-
mum! dimensions of their null spaces. This allows one
define a suitable isostaticity notion for topological structur
a generically isostatic structureis one for which both num-
bersh andk2k0 are equal to zero.

It follows from the definitions that a geometrically iso
tatic structure, once regarded as a topological structure
always a generically isostatic one, but that the recipro
property is not true. Reference@20# gives a counterexampl
for a system of disks~like systemsA andB, equivalent to a
network of articulated bars! on the regular triangular lattice
In specific configurations~like that of a regular triangula
lattice!, one might exceptionally haveh5k2k0.0 on ge-
nerically isostatic structures.

In two dimensions, there exist some powerful algorith
@21,22# to evaluate the generic degrees of force and velo
indeterminacy in central-force networks~or systems of fric-
tionless disks!. Such computational methods deal only wi
connectivity properties; they do not manipulate floatin
point numbers and are therefore devoid of numerical rou
off errors. They have been successfully applied to system
up to 106 nodes. However they are, of course, unable
compute position-dependent quantities like force values.

III. CONTACT LAW AND POTENTIAL MINIMIZATION

So far, the only restriction on intergranular forces was t
they should be normal to the grain surfaces.4 In this section
we consider some more specific cases of frictionless gra
in which some ‘‘contact law,’’ relating normal forces to rela
tive positions, is known. This provides some limited ad
tional information, which is not sufficient in general to pr

4In fact, all the properties hold true provided thedirectionof each
intergranular force is imposed.
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dict the grain trajectories once they are submitted to exte
forces, for all dynamical aspects are still unknown and
characterization of equilibrium might even be incomple
Our aim is to deduce as much as possible about the gl
properties of the granular assembly from as little informat
as possible about the detailed mechanical laws of the c
tacts, in order to stress the importance of geometrical
pects. Thus we first present the simplest case of rigid, f
tionless, and cohesionless grains, in which contacts sim
behave as struts. Then we introduce and briefly discuss o
possible laws in which unilaterality or rigidity constraints a
modified or relaxed. Most of those frictionless systems p
sess a potential energy that is stationary at equilibrium st
and then reaches a minimum if they are stable. Through
this section, it is assumed that a one-parameter loading m
has been defined for varying particle positions and orien
tions, with constant external forces, and that the poten
energy of external forces,W, can be written in the forms o
Eqs.~2.4! and ~2.5!.

A. Rigid frictionless grains, no cohesion

In this case, the contact law takes the form of the
called Signorini condition:

f i j 50 if hi j .0,
~3.1!

f i j >0 if hi j 50.

It should be noted that this law does not express a functio
dependence off l on hl . Let us study the variations ofW near
equilibrium states. First, consider such a state in which so
non-negative contact forcesf l* in closed contacts (hl50)
balance the external loadQ. Let us apply the theorem o
virtual power with statically admissible force set (f l* )1< l<N ,
and arbitrary particle velocities, corresponding to relat
normal velocitiesdVl52dhl /dt and a valuel5dL/dt for
the kinematic parameter conjugate toQ. For anyl such that
f l* .0, the Signorini condition requires thathl50 and one
must havedVl<0 to comply with the impenetrability con
straints. Then, from

dW

dt
52Q

dL

dt
52Ql52(

l
f l* dVl ,

it follows that any motion that does not lead to grain inte
penetration can only, to first order int ~any parameter on the
trajectory in configuration space!, increasethe potential en-
ergy. This non-negative first-order variation might be eq
to zero if dVl50 for any active contactl, i.e., if a mecha-
nism exists on the backbone of the contact structu
Whether the equilibrium state corresponds to a minimum
W depends then on the sign of second- or higher-order va
tions. If the backbone of the contact structure is rigid, thenW
is necessarily minimized at equilibrium.

Conversely, let us assume that a configuration of
grains has been reached that locally minimizesW under the
constraintshl>0. There must then exist some non-negat
Lagrange multipliers fl such that, for any coordinatexa ,

2
]

]xa
~QL!52(

l
f l

]hl

]xa
. ~3.2!
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Only for such indicesl that hl50 do thef l take nonvanish-
ing values. The partial derivative in the right-hand side
Eq. ~3.2! is the opposite of matrix elementGl ,a , while, from
Eq. ~2.4!, that of the left-hand side is the external force co
jugate toxa . Thus, we have just written that parametersf l
are in fact equilibrium contact forces satisfying Eqs.~3.1!,
and reaction forces stem from geometrical constraints.

We now introduce a few other related contact laws a
mechanical models.

B. Systems with tensile or bilateral forces

Networks of rigid strings or cables are analogous to fr
tionless spheres~ignoring their rotations! if the sign of forces
is reversed and if the distance constrainthl>0 is replaced by
hl<0. The Signorini condition~3.1! becomes

f i j 50 if hi j ,0,
~3.3!

f i j <0 if hi j 50,

and the whole treament of the preceding subsection stra
forwardly applies.

In the case of nonspherical grains, an analogous sys
supporting tensile forces is an idealized chain, in wh
‘‘grain’’—chain link—perimeters are free to cross. Pairs
neighboring links~interpenetrating ‘‘grains’’! exert a force
on one another, opposing their separation, when their in
section is reduced to a contact point.

A bilateral contact law,

f i j 50 if hi j Þ0,
~3.4!

f i j unknown if hi j 50,

might model rigid cohesive grains that ‘‘stick’’ to one an
other. The sticking force might be limited by an inequalit

f i j 50 if hi j Þ0,
~3.5!

f i j >2 f 0 if hi j 50.

When one simply uses the form~3.4!, assuming that the pair
that are stuck in contact will not come apart, the conclusi
of Sec. III A still hold, if unilateral conditions on relative
velocities and displacements are replaced by bilateral o
and if all sign constraints on contact forces are remov
Equilibrium configurations are characterized by stationa
of the potential energyW. Minimization of W ensures stabil-
ity. A sufficient but not necessary condition for minimizatio
of W is the rigidity of the backbone of the contact structu

Reciprocally, statically admissible normal contact forc
naturally appear as Lagrange multipliers associated with
lateral constraintshl50 at a potential energy minimum
However, contact law~3.5! does not lend itself to a potentia
energy formulation.

Tensegrities@23# ~with rigid elements! are by definition
mixed networks of struts@satisfying condition Eq.~3.1!# or
bars ~bilateral! on the one hand, and cables@satisfying Eq.
~3.3!#, on the other hand. Their potential energy has the sa
properties as stated above.
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C. Systems with a smooth interaction potential

The model of perfectly rigid grains is physically reaso
able when contact deformations (hl,0) are negligible in
comparison with any other relevant length in the proble
When this is no longer the case, or when one wishes
model sound propagation, it is appropriate to deal with c
tact laws that involve elastic deformations, e.g.,

f i j 5H 0 if hi j .0,

Ki j uhi j um if hi j <0,
~3.6!

in which Ki j is a stiffness constant that depends on mate
properties and on the geometry of contacti , j . The exponent
is m53/2 ~Hertz law! for smooth surfaces in 3D, and othe
values might model roughness and the presence of con
asperities@24,25#.

Such contact forces derive from an elastic potential
ergy:

Wel5(
l 51

N

w~hl ! with w~hl !5
Kl

m11
uhl um11. ~3.7!

Likewise, rigid cables as introduced in Sec. III B could
replaced by elastic ones. That stable equilibrium states
respond to minima, in the absence of friction, of the to
potential energy

Wtot5Wel1W ~3.8!

@the sum of the elastic potential~3.7! and the potential en-
ergy of external forces~2.4! or ~2.5!# is an extremely familiar
property. The Signorini condition might physically be r
garded as the limit of the interaction law expressed by
~3.6! when the stiffness constants become very large,
equivalently, when the level of intergranular forces a
proaches zero. Alternatively, it is mathematically possible
introduce a regularized contact law of the form~3.6! as an
approximation, when contacts are stiff enough, of the id
impenetrability constraint. Such a point of view is adopted
optimization theory: the procedure known as penalization
the constraints amounts to searching for unconstrai
minima of W1Wel, instead of minimizingW subject to im-
penetrability constraints.

Tensile contact forces of limited intensity, as in conta
law ~3.5!, might result from some attractive interaction
finite, but small, range, as depicted in Fig. 6. It is interest
to note that the addition of an attractive tail has turned
potentialw(h) into a nonconvex function of interstitial thick
nessh. At the inflection pointA the attractive force reache
its maximum f A . If one pulls with a growing force on two
grains in contact in order to separate them, an instability
which the contact suddenly breaks open, is reached as
pulling force reaches the valuef A . When the corresponding
intergranular distancehA is so small that it is negligible in
comparison to all other relevant lengths in the problem, o
might then replace the smooth attractive potential by con
law ~3.5!, with f 05 f A . On doing so, however, one loses th
possibility to exploit minimization properties.

We shall see that the potential minimization propert
have important consequences in terms of the poss
uniqueness of the equilibrium state under a prescribed lo
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and, eventually, as to the possible origins of macrosco
plastic dissipation. But, first, we have to extend the prop
ties we have stated for velocities~or infinitesimal displace-
ments! to small displacements around a given reference c
figuration.

IV. APPROXIMATION OF SMALL DISPLACEMENTS

A. Definition

We wish to use the concepts we have introduced in
preceding sections while allowing some motion of the grai
of small but finite extent, which might alter the list of close
intergranular contacts. Consequently, we introduce the
sumption that displacements from a reference configura
are small enough to be regarded as infinitesimal quanti
This approximation of small displacements~ASD! is a cru-
cial step that is very often taken in solid state mechan
Indeed, it is indispensable if one wishes to deal with line
problems: adding up two displacement fields, for instance
continuum mechanics, is otherwise a meaningless opera
In the case of granular systems, it will also lead to a line
ization of the problems, for the curvature of configurati
spaces will be ignored. Its range of validity has to be
sesseda posteriori, but is of course presumably larger
dense systems, where contacts might open and close
only tiny changes of the relative positions of neighbori
grains.

Specifically, we assume the coordinates of the grains
stay close to reference values. Quantities pertaining to
reference configuration will be labeled with a superscript
It is often convenient, then, to work with a fixed structure
the list of contacts that might close, and transmit a force
known a priori.

Interstitial thicknesseshl are written ashl5hl
02dul ,

with a relative normal displacementdul that is linear in the

FIG. 6. Interaction potential as a function of interstitial thic
nessh, with an attractive tail. The curve has an inflexion pointA,
corresponding to the maximum attraction force~equal to the slope
of the dotted line!.
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grain displacements~and rotations!, regarded as small quan
tities. Vectorsni j , Ri j , Rj i are regarded as constant, equal
ni j

0 , Ri j
0 , Rj i

0 . As they appear as cofactors of the displac
ments, taking their variations into account would introdu
second-order terms. All changes of the structure geom
are ignored. SpacesC,S and operatorsG,GT are assumed to
be the same in the actual as in the reference configurati
Displacements are now endowed with the same linear a
braic structures as velocities.G operates on displacement
yielding relative normal displacementsdul , the compatibil-
ity condition for relative normal displacements is the o
thogonality to the space of self-balanced internal forcesS0, a
theorem of virtual work can be stated instead of the theor
of virtual power, etc.

Within the framework of the ASD, the specificity of me
chanical problems disappears: as the effect of the displ
ments of the grains~variations of the coordinates! on the
positions~coordinates! themselves is ignored, one can fin
analogies with various other local properties of a list of fix
points, nodes, or lattice sites. Forces now appear as unkn
vectors carried by fixed directions, and the sum of incom
forces on a node has to vanish. Part V introduces the ana
with scalar transport on a fixed network.

B. Lattice models

Regular packings of monodisperse spheres in 3D~or disks
in 2D! on fcc or hexagonal compact~triangular in 2D! lat-
tices are simple systems that are often studied theoretic
experimentally@26,27#, and numerically@28–30,15,9,31,16,
17,32,33#. Because truly monodisperse systems do not ex
and because of possible elastic deformations of the gra
one cannot expect such lattices to remain perfectly reg
and undisturbed. However, as lattice perturbations will
small, it is a common practice@28,29,15,9,16,17# to resort to
the ASD, with a perfect lattice as the reference configurat
from which displacements and strains are evaluated.

Consider, e.g., the case of slightly polydisperse disks o
triangular lattice, as in systemsA andB. A perfect lattice can
be chosen as the reference state, in which the spacing
tween neighbouring sites is the lowest upper bounda of the
diameter distribution. Diameters are assumed to be dist
uted betweena(12a) anda, with a small parametera!1.
The diameter of diski is thus

ai5a~12d ia!, ~4.1!

d i being a random number, drawn independently for eaci
between 0 and 1. When a certain number of intergranu
contacts is created, as is often necessary~cf. Sec. III! in order
to sustain some external forces, the lattice will be sligh
distorted, with displacements of ordera. The ASD amounts
to dealing with all relevant quantities to leading order ina.
In all possible contacts, the normal unit vector is kept par
lel to one of the three directions of dense lines in the tria
gular lattice. It is convenient to work with a fixed structu
S0 that comprises all bonds between nearest neighbors on
lattice. If grains are required to touch to exert a force on o
another, forces, in a state of equilibrium under a suppor
load, will be carried by some contact structure, the bonds
which form a subset ofS0.
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One might then regard problem PA1, in systemA, as de-
fined on S0. Once the random radii were fixed, we foun
within the ASD, an equilibrium configuration for problem
PA1, satisfying the Signorini condition~3.1!, in which the
contact structure was SA1. Similarly, once the values of
radii were known in systemB, SB1 was found, within the
ASD, as the contact structure corresponding to a solutio
problem PB1, posed on SB35S0. Within the ASD, all dis-
placements and deformations are proportional toa, and the
problem is sensitive only to parameters (d i)1< i<n , apart
from a scale factora for displacements.

Such is not the case, of course, without the ASD, if o
takes into account the rotations of unit vectorsnl of the
bonds due to the deformation of the lattice.

V. ANALOGY WITH SCALAR PROBLEMS

We briefly recall the analogy between the mechani
problems we have been discussing, within the approxima
of small displacements, and that of current transport o
resistor network. Such an analogy was presented, e.g
Ref. @20#. It is useful because some properties are more
mediately intuitive in scalar models, and because statist
models ~percolation, directed percolation, minimum path
etc.! have been more extensively studied and are more fa
iar in the scalar case. The term ‘‘scalar’’ refers to the tra
port of a scalar quantity~current! as opposed to a vectoria
one ~force! in mechanical problems. Currents entering o
node by the conducting bonds of the network should bala
the external current fed into that node, just as bond for
balance external efforts. The analog of the displacement
tor ~which, in the general case, also involves angular d
placements! is the~scalar! potential of a node, and the dua
ity between forces and displacements translates into
duality between currents and potentials. All the develo
ments of Sec. II, adapted within the ASD to displaceme
instead of velocities, are valid for resistor networks.dul is
the potential drop in bondl. One may define space
F,C,V,S0 , M operatorsG andGT, state the theorem of vir
tual power, etc. The analog of a system of self-balanced b
forces is a set of currents satisfying the conservation
without any external source, i.e., a combination of curr
loops. One may define as many linearly independent
ments ofM as there are disconnected parts in the netwo
The number of degrees of freedomNf is now equal to the
number of nodes. It is related to the number of bondsN, the
number of independent loopsh, and the number of discon
nected parts (1 for a connex network! k by the scalar version
of Eq. ~2.16!:

N1k5Nf1h,

a simple topological identity valid for an arbitrary graph.

VI. ISOSTATICITY PROPERTY

A. Statement and context

We consider an assembly of rigid, frictionless grains t
exert only normal contact forces on one another. Th
forces might, however, be attractive or repulsive. We assu
that the system, submitted to a prescribed load, has evo
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to an equilibrium configuration in which the contact structu
supports the load. We also regard the geometric definition
particles as incompletely known, thereby introducing ra
domness: such parameters as grain diameters or radii of
vature are to be regarded as distributed over small interv
Then one can state the following remarkable property:with
probability 1, the problem, posed on the contact structure
isostatic.

Such an isostaticity property was~more or less explicitly!
reported in Ref.@20# and articles cited therein, in the case
triangular lattice systems, within the ASD, with grains sat
fying the Signorini condition~3.1!. Isostaticity was also
stated in Refs.@30,15,9,17#, which deal with the same mode
Moukarzel @33,34# then argued that systems of frictionle
grains interacting by repulsive elastic contact forces sho
become isostatic in the limit of large contact stiffnesses.
timately, Tkachenko and Witten@35# derived an isostaticity
property for disordered systems of rigid frictionless sphe
in arbitrary dimension, each grain being submitted to an
ternal force~e.g., to its weight!, whatever the sign of contac
forces.

Here, we will establish the isostaticity of theproblem(h
50), rather than the isostaticity of the structure (h50 and
k5k0), in quite general situations. As we shall see in S
VIII, full rigidity ( k5k0) in addition to absence of hypersta
ticity (h50) is a less general property, ofgeometric, as op-
posed totopological, origin.

B. General arguments

The arguments we give below to establish the isostati
property emphasize the peculiarity of equilibrium states,
which sufficiently many intergranular contacts should be c
ated in order to resist the externally imposed forces. T
such states belong to a subset of configuration space of
ishing measure. Grains have been brought to rest by s
unspecified dynamic dissipative process. Our derivation
mittedly retains a heuristic flavor, for a definitive proo
would require much more specific mathematical assum
tions. Readers who demand more mathematical rigor
have realized that arguments presented by other authors@33–
35# are not without reproach either, and may refer to the n
paragraph. There, within the ASD~and thus at the expense o
additional assumptions about the magnitude of displa
ments from a reference configuration!, isostaticity is rigor-
ously deduced.

To ease the presentation of our arguments, let us in
duce a few compact notations. We denote as (qi)1< i<Nf

a set

of coordinates in configuration spaceE. The geometry of the
grains depends on some random parameters~sizes, shapes
etc.!, collectively denoted asz. z might be regarded as
vector with a large number, sayp, of components:zPRp.
The evolution of the granular system can be modeled a
function F that maps an initial configuration (qi)1< i<Nf

(0) to

the actual equilibrium configuration (qi)1< i<Nf
. The motion

of the grains from (qi)1< i<Nf

(0) to (qi)1< i<Nf
might, e.g., be

described by a differential equation.F then expresses th
dependence on initial conditions.F also depends onz,
which has the role of a set of parameters. To proceed, on
to assume that this dependence is sufficiently regular:F:E
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3Rp→E is generally a smooth function. Although the ev
lution of a pack of grains is expected to exhibit a high se
sitivity to parameters and initial conditions, it is dissipati
and will bring the system very close to equilibrium in a fini
time. Chaotic trajectories deviate fast from one another,
the evolution in a finite time is expected to be expressed
a smooth mapping, which also depends continuously on
rametersz, except perhaps for peculiar values that cor
spond to bifurcations between different sets of final state
‘‘attraction basins.’’ If, for instance, one reproduces the sa
dynamical evolution from the initial to the final configura
tions and gradually changes the size of one particle,
expects, physically, the final state to change only gradua
until for some value of the geometrical change some re
rangement of finite extent will suddenly take place. We
sume such bifurcations occur only for isolated values of
parameters, such that around the actualzPRp, there exists
generically a neighborhoodV within which the paramete
set might vary without creating any discontinuity or closi
any additional contact in the final configuration (qi)1< i<Nf

PE.
Consider now the setL of intergranular contacts corre

sponding to this configuration~the contact structure, as de
fined in Sec. II!. As z changes withinV, maintained contacts
form some nonempty subset ofL, which is sufficient to carry
the load.

If zPV varies along a curve parametrized byu, so does
(qi)1< i<Nf

in E via the mappingF. If a contact (i , j )PL is
to be maintained in this motion, one must have

dhi j

du
50. ~6.1!

This means that the coordinates of grainsi and j have to
adjust to the change in grain geometryz. If parameteru is
formally regarded astime, relative normalvelocitiesdVi j 5
2dhi j /du in all contacts that are maintained are required
balance the effect of the change ofz, to ensure that equality
~6.1! is still satisfied. Increasing, if needed, the numberp of
z components, it is natural to assume that such condition
relative velocities are independent from contact to cont
for the required value ofdVi j depends only on those geome
ric parameters that govern the shape of grainsi and j in the
immediate vicinity of their contact point. Therefore, for a li
L of N contacts to be maintained for arbitraryzPV, any
N-vector (dVl)1< l<NPRN of possible relative normal ve
locities in the contacts ofL must be compatible. In view o
condition ~2.15!, only such contact structuresL that are de-
void of self-balanced sets of internal forces~i.e., such that
h50 or S05$0%) can be maintained. If, exceptionally, th
equilibrium configuration (qi)1< i<Nf

admits one nonvanish

ing element (g l)1< l<N of S0, then, as the condition

(
1< l<N

g ldVl50

cannot be ensured for arbitrary (dVl)1< l<NPRN and grains
cannot interpenetrate, one at least of the contactsl such that
g lÞ0 will open (dVl,0) upon slightly tampering with geo
metric parametersz. We have thus shown that, with prob
-
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ability 1, the contact structure in the equilibrium configur
tion cannot be hyperstatic and the degree of indeterminac
forcesh is equal to zero.

The above derivation relies on rather specific assumpti
about mappingF. One should be aware, however, that w
are free to choose any initial configuration that does not v
late impenetrability conditions. The assumptions we have
lied upon are quite natural when the initial and final equil
rium configurations are close to each other. Essentially,
has then to accept the idea that the fine geometrical detai
grain surfaces, in the vicinity of their contact points at eq
librium, do not significantly influence their trajectories e
cept in the very final stage. Thus they can be regarded
randomly chosen during this ultimate stage of the appro
to equilibrium, as though the system ‘‘realized’’ then wh
their actual values are. In the next subsection it is assum
that the ‘‘initial’’ and final states are so close that the moti
between them might correctly be described within the AS
Other derivations might resort to fictitious construction pr
cesses of the granular assembly, in whichF is replaced by a
simpler function. One might consider, e.g., sequentia
bringing the grains, one by one, to their equilibrium positio
thus gradually enlarging the list of contacts. If, at any sta
in the process,h is strictly positive, some of the contact
cannot be maintained on slightly altering some of the g
metrical details of grain surfaces near the most recently
ated contacts.

The equilibrium state, as we have just concluded, is
void of hyperstaticity (h50). What about its possible
mechanisms? We have assumed that it can support the
It is tempting to conclude that mechanisms do not exist in
generic case, since the orthogonality condition~2.17! would
have to be maintained as the shape of the grains is alte
However, one has to keep in mind that equilibrium config
rations are very peculiar ones, and we shall see that the
istence of mechanisms in the equilibrium state depend
general on the sign of intergranular forces and on the sh
of the grains.

C. Alternative derivation within the ASD: The special case
of lattice models

A slightly different point of view may be adopted in th
framework of the ASD: within the approximation, the pro
lem being replaced by a simplified one, the isostaticity pro
erty can be established in a rigorous way. Also, the anal
with the scalar problem might make the result more imm
diately intuitive. Let us assume the ASD to be valid with
reference configuration in which all contacts are sligh
open: a list of bonds is defined, with strictly positive valu
of interstitial thicknesseshl

0 . hi j
0 , the distance separating th

surfaces of grainsi and j, is to be regarded as a rando
number that depends on fine details of their geometry.hi j

0

values for the different bonds are independent and cont
ously distributed. Once the system has been brought to
equilibrium configuration, forces are carried by contacts, i
bonds l for which hl50. If (g l)1< l<N is a set of self-
balanced forces carried by those contacts, the theorem
virtual work, applied with such bond forces on the one ha
and with the displacements from the reference to the equ
rium configurations on the other hand yields
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(
l 51

N

g l~hl
02hl !5(

l 51

N

g lhl
050. ~6.2!

Thus a certain linear combination of the random distanceshl
0

has to be equal to zero. Coefficients (g l)1< l<N are fixed once
the reference configuration is known. Moreover, via an ite
tive dilution process, they can be chosen among a finite
as we now show. Assume a set of self-balanced for
(g l)1< l<N to exist, and define the setB0 of bondsl for which
g lÞ0. Then, as long as it is possible, proceed to succes
‘‘dilutions’’ of this set, definingB1 , B2, etc., requesting tha
there is one bond less inBk11 than inBk , but that it is still
possible to find self-balanced forces localized on the bo
of the reduced set. The finalBk0

, that can no longer be di

luted, will be such that the values ofg l will be uniquely
determined for eachl PBk0

, up to a common factor, which i

fixed if one imposes the condition that the largestg l is equal
to 1. In this way, one thus definesirreducible sets of self-
balanced forces, that are put in one-to-one corresponden
with certain substructures of the whole contact structure.
finite system, one thus has a finite number of such irreduc
sets of bond forces. If a system of self-balanced forces ca
carried by the contacts that are closed, then Eq.~6.2! has to
be satisfied with one of the irreducible systems of se
balanced forces, an occurrence of probability zero.

The scalar analog of this derivation is especially straig
forward. To the requirement that only particles in conta
exert a force on one another corresponds the condition th
bond between sitesa andb on the resistor network can carr
a current only when the potential differenceva2vb is equal
to a prescribed valuevab

0 . Parametersvab
0 are to be regarded

as random, chosen according to a continuous probability
tribution and independent from bond to bond. Then, the
pearance, once some current is injected at one node o
resistor network and extracted at another, of a loop
current-carrying bonds is to be discarded as an occurrenc
zero probability. ~One may, of course, define irreducib
loops, as the ones that carry a unit current and do not con
strictly smaller subloops.! Assume three bonds, making
loop between three sites, say 1→2→3→1, to carry a non-
vanishing current~Fig. 7!. This implies an exact relation o
the form 6v1,2

0 6v2,3
0 6v3,1

0 50, which has no chance to b
satisfied.

Let us consider now, as an example, returning to gran
systems, the small hyperstatic structure of Fig. 4, and ass
that the seven grains have been brought from the refere
configuration of the triangular lattice model defined in S
IV B, in which all interstices are open (hi j

0 .0), to an equi-
librium configuration in which the 12 bonds are closed co
tacts, withhi j 50. Labeling the grains as on the figure, E
~6.2! reads

FIG. 7. Three bonds forming a loop in the resistor network.
current might circulate as indicated by the arrows.
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hi ,i 11
0 50 ,

which is true with probability zero for continuously distrib
uted independent random numbershi j

0 . Within the lattice
model with random diameters, as introduced in Sec. IV
one has

hi j
0 5

a

2
~d i1d j !a. ~6.3!

One obtains a relationship betweend i ’s,

d15 1
6 ~d21d31d41d51d61d7!,

which, once again, is satisfied with probability zero.
It is less obvious, however, that the disorder on the ra

of disks that remain exactly circular~or of perfect spheres in
3D! is sufficient, because of the induced disorder onhi j ’s as
in Eq. ~6.3!, to forbid the existence ofany set of self-
balanced contact forces. The problem is that, because of
~6.3!, interstitial thicknesses are no longer independent.
transforming Eq.~6.2! into a relation betweend i ’s, one gets

(
i

S (
j Þ i

g i j D d i50,

which might well be satisfied if( j Þ ig i j 50 for eachi. This
latter condition has no chance to be obeyed in a disorde
system, but may be achieved on a regular lattice. This d
not occur, however, with nearly monodisperse disks on
regular triangular lattice in 2D, because three independ
conditions per disk are to be satisfied, and the numbe
contacts, at most three times the number of disks on
six-coordinated lattice, has to be strictly smaller, because
perstatic configurations like that of Fig. 4 cannot exist.

The situation is different for the analogous 3D mod
defined with slightly polydisperse spheres on the sites o
fcc lattice. Each sphere has 12 nearest neighbors, and
may find hyperstatic structures in which contacts will
maintained with polydisperse spheres. A simple example
such a structure can be found with 24 spheres and
contacts.5 Although a small amount of polydispersity elim
nates hyperstaticity in 2D triangular lattices of disks, it do
not do so in fcc lattices of spheres, provided the grains
spite of the distribution of radii, remain perfectly spherical.
the shape of the grains is also affected by the slight geom
ric disorder, then~with the notations of Fig. 3! one has
iRi j iÞiRiki for j Þk, interstitial thicknesseshi j become in-
dependent in all bonds of the lattice, and hyperstaticity
forbidden. ~Within the ASD, it is consistent to ignore th
rotation of unit vectorsni j due to small departures from
sphericity.!

5The interested reader can obtain the list of sphere positions f
the author.
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D. Consequences and remarks

Once the list of active contacts in an equilibrium state
known, isostaticity of the problem enables a purely geom
ric determination of the forces, independently of mater
properties. As an example, systemC was brought into equi-
librium under the load defined by Eq.~2.19!, with conditions
~3.1!. As soon as the list of contacts~structure SC! is known,
the set of normal contact forces is entirely determined.

This gives a meaning to the limit of rigid particles:
generic situations, when the sizes and shapes of the g
are affected by some amount of randomness, there is
problem of force indeterminacy once an equilibrium config
ration has been reached. The actual value of contact fo
will not depend on the detail of the contact law, provided
might be regarded as rigid, but it will be sensitive to fi
geometrical details. As an example, consider frictionl
elastic contacts obeying Eq.~3.6!. Let us assume that a stab
equilibrium state of the grain assembly, regarding the gra
as perfectly rigid@condition ~3.1!#, has been reached. On
thus has a local minimum ofW @defined in Eqs.~2.4! or
~2.5!#. Then, let us take into account the finite, but sma
deformability of the contacts. The same list of contacts w
carry forces that, to first order in the small displacements
not change. Evaluation within the ASD of relative norm
displacementshl,0 in force-carrying contacts yieldshl5
2( f l /Kl)

1/m, such relative displacements are compatible
cause of the isostaticity property, and the resulting ela
energy

Wel5
1

m11 ( Kl uhl um115
1

m11( Kl
21/mf l

(m11)/m

tends to zero as stiffness constantsKl tend to infinity. Thus
the actual values of constantsKl and exponentm ~these data
might vary from contact to contact! are irrelevant.

Once an equilibrium state has been reached, force va
do not depend on the details of the contact law: this is
important step on the way to thereduction of the mechanic
of granular systems to geometry—the basic goal of the
present paper. This contributes to ease the derivation of
neric mechanical properties of granular systems.

The simplification that results from the isostaticity pro
erty should, however, be balanced with the two followi
difficulties. First, configurations of granular systems, due
the same isostaticity property, are necessarily quite sens
to fine geometric details: tiny variations of grain dimensio
or positions might lead to opening of some contacts. As
contacts are indispensable to support the load, the system
to rearrange somehow to create other contacts that com
sate for those that were lost. This is the origin of a prope
known asfragility, to be more accurately defined and d
cussed in Sec. IX.

Secondly, one should be aware that the choice of an e
librium configuration among several possible ones might
pend on physical parameters other than the geometry o
grains. The reduction to geometry is thus not complete
Sec. VII below, the consequences of the ASD are stud
and it is shown that mechanical problems are entirely g
metric within the approximation.

As a consequence of the absence of hyperstaticityh
50), one readily obtains from Eq.~2.16! a bound on the
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number of contactsN that carry a force, involving the num
berNf of degrees of freedom of the particles belonging to
backbone of the force-carrying structure:N<Nf2k0. Ne-
glecting the effect of boundary conditions on the count ofNf
in large granular systems, one gets an upper bound on
coordination numberc52N/n:

c<H 2d for spheres

d~d11! in the general case.
~6.4!

Particles in 3D that possess an axis of revolution, like sp
roids, also have one trivial rotational free motion~in the
absence of friction!. Thus one should subtract one degree
freedom for each, hence the boundc<10, instead of the
general 3D value 12.

Interestingly, an estimatec.11 for the coordination num-
ber of long rods or fibers was given by Philipse@36#, on the
basis of some statistical assumptions about the random p
ings of such particles.

What we have established is in fact theabsence of hyper-
staticity of a generically disordered assembly of rigid grain
regarded as frictionless. Forces, in the derivation, appea
only as convenient auxiliary quantities~‘‘virtual’’ forces ! to
deal with a purely geometric problem. The conclusions th
hold in the presence of solid friction. Assemblies of rig
grains with friction therefore abide by inequality~6.4!. ~It is
of course well known, from numerical simulations in partic
lar @37–39#, that the contact coordination number is a d
creasing function of the friction coefficient.!

It is also worth pointing out that~6.4! does not depend on
the polydispersity of the grains. Grains that are much lar
than their neighbors will often touch a large number of the
However, this effect should be compensated in the aver
coordination number by an opposite one, affecting sm
grains. When they touch a large one, this latter effectiv
occupies half of the surrounding space, thereby reducing
possibility for other contacts.

On the ground that force-carrying structures should
rigid ~devoid of mechanisms,k5k0) theoppositeinequality,
N>Nf , whence thelower boundd(d11) (2d for spheres or
disks! for the coordination number, is sometimes quoted
the literature@40,35#. We regard it as wrong in general~al-
though true for systems of noncohesive rigid frictionle
spheres, as we shall see!. As pointed out by Alexander@40#,
the physically relevant concept is not rigidity, but stabili
~under a given external load!. This is discussed in Sec. VII
below. First, Sec. VII is devoted to the exploitation of pote
tial minimization properties within the ASD.

VII. EQUILIBRIUM AND POTENTIAL MINIMIZATION
WITHIN THE ASD

The approximation of small displacements introduced
Sec. IV has several important consequences. Finding
equilibrium state amounts, in some cases, to solving a c
vex minimization problem, for which optimization theor
provides useful properties and tools. The relationship w
percolation or minimum path models is also to be discus
within the ASD.
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A. Convexity

When the potential energy is a convex function of d
placements or positions, and when the rigid constraints
fine a convex set in configuration space, then the search
stable equilibrium state is a convex optimization proble
and the following important properties can be exploited@41#.
~1! The equilibrium conditions, which express thestationar-
ity of the potential, are not onlynecessaryconditions for
potential minimization~i.e., stability!, they are alsosuffi-
cient. ~2! A local minimum of potentialW is a global mini-
mum. W is flat, equal to its minimum value, over a conve
set of possible equilibrium configurations.~3! A structure
being given, a supportable load will be supported.~4! Equi-
librium forces are the solution to another optimization pro
lem ~the so-calleddual problem!. ~5! Rigid laws and elastic
ones can be dealt with in the same way.

Let us, among the contact laws presented in Sec. III,
tinguish the ones that lead to convex problems. It should
remarked first that standard convexity is defined in vec
spaces, not on manifolds. In order to exploit the class
results of convex optimization theory in grains of arbitra
shape, it is necessary to place ourselves within the fram
the ASD, which replaces the curved configuration space
its flat tangent spaceRNf .

As intergranular distanceshl are, within the ASD, affine
functions of displacements, it follows that both rigid co
straintshl>0 and hl<0 define a convex set~and so does
hl50): the accessible part of configuration space is a s
plex, a convex set whose boundaries are a collection of
sections~parts of affine spaces!. Since the potential energy o
external forces,W, is linear in the displacements, its minim
zation belongs to the class oflinear optimization problems
that are the subject of a large literature in applied mathem
ics and operational research. This important case—gran
systems within the ASD with contact laws of type~3.1!, or
systems abiding by Eq.~3.3! or Eq. ~3.4!, or tensegrities—is
dealt with in detail in Sec. VII B.

Still within the ASD, contact laws involving smooth in
teraction potentials will lead to convex problems if the p
tential functionw is convex. This is the case for unilater
elasticity, as defined in Eqs.~3.6! and ~3.7!, but not for in-
tergranular potentials that possess an attractive tail as in
6.

Outsidethe ASD, convexity can be discussed in the ca
of spheres or disks, since, ignoring rotations, their confi
ration space is flat. One immediately checks, then, that
penetrability constraintshl>0, define a nonconvex set o
admissible configurations oncehl is no longer approximated
as an affine function of displacements. The opposite ineq
ity hl<0, on the contrary, does lead to convex problems.
we shall see, frictionless spheres on the one hand and
tems of strings tied together on the other hand behave
actly in the same way, upon reversing the sign of forces
deformations,within the ASD, but strongly differwithout the
ASD.

B. Rigid, unilateral contact law

1. Context and notation

The properties of convex problems enumerated above
valid, in particular, in the case of linear optimization pro
-
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lems, for which they are sometimes presented in particu
forms @41,42#. Here, in order to stress their physical mea
ing, we shall directly rederive them. We consider an asse
bly of rigid frictionless grains, satisfying the Signorini con
ditions ~3.1!, dealt with within the ASD. We assume
structure has been defined, and if the load is supported, s
of its N bonds will, at equilibrium, close (hl50) and trans-
mit a force (f l.0). The following also applies if condition
~3.1! is replaced by~3.3! or ~3.4!.

Keeping the same notation as in Secs. II and IV, we kn
that the impenetrability constraints are expressed with ma
G

(
m51

Nf

Glmum<hl
0 for 1< l<N, ~7.1!

the transpose of which appears in the equilibrium equati

(
l 51

N

Glm f l5Fm
ext , for 1<m<Nf . ~7.2!

Throughout this section, compact notation will be used
vectors of external forces@Fext for (Fm

ext)1<m<Nf
# contact

forces @ f for ( f l)1< l<N#, interstices@h for (hl)1< l<N#, and
displacements@u for (um)1<m<Nf

#, the bracket notation@e.g.,

(fuh)# is used for scalar products, while operator notatio
and abbreviation for inequalities reduce Eq.~7.1! to Gu
<h0.

2. Minimization in displacement space

We now show that finding equilibrium displacements
equivalentto solving the following linear optimization prob
lem P1: Minimize W52Ql52(Fm

extum with constraints
in Eq. ~7.1!. We know from Sec. III that a solution to prob
lem P1 provides a set of Lagrange parameters (f l)1< l<N that
satisfy both conditions~3.1! and ~7.2! @or ~3.2!#, and are
therefore equilibrium forces.

Conversely, in the case of a linear optimization proble
such asP1, the stationarity condition is sufficient to ensu
that W is minimized. This can be checked as follows. L
u* PV represent one solution for displacements, and, li
wise, let us denote equilibrium contact forces asf* PRN. To
u* corresponds the set of valuesh* for interstitial distances,
and the Signorini condition might be expressed as

~ f* uh* !50,

while any displacement vectoruPV, corresponding toh, sat-
isfies

~ f* uh!>0.

From the theorem of virtual work, one then has

W~u!2W~u* !52~ f* uh* !1~ f* uh!>0

and displacementu* minimizes the potential energy.
Figure 8 is a schematic representation of problemP1. A

simplex, defined by a set of affine constraints like~7.1!, is
limited by flat faces, where some of the constraints are
tive. Its extreme points~the ‘‘corners’’! are where a maxi-
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mum list of constraints are simultaneously active. The cr
rion to be minimized is itself an affine function; it is consta
on hyperplanes that are orthogonal to the load. Equilibri
is achieved on the simplex boundary, at least in one extre
point, in general on a simplexA in a space that is orthogona
to the load direction. Letk ~smaller thanNf) denote the
dimension of this space. Within the set of solutions,W is
constant, and a certain numberN* of contacts are maintaine
closed. Let us denote this structure asS* : it is the list of
contacts that are closed for all equilibrium configuratio
For those equilibrium states that are on the boundary oA,
some additional contacts are created. It follows from its d
nition thatk is the degree of velocity~here, within the ASD,
of displacement! indeterminacy ofS* . Since, from Sec. VI,
its degree of hyperstaticity is zero, one hask5Nf2N* .

3. Supportable loads will be supported

In general, displacements are thus determined up to s
motion within convex setA. Let us now show thatA is not
empty if the load is supportable. We assume some static
admissible forces (f l

0)1< l<N to be defined on the bonds o
the complete structure that was defineda priori. Then a finite
lower bound forW on the whole simplex of admissible dis
placements can be obtained upon writing the variation oW
from the reference configuration as

DW52 (
1< l<N

f l
0dul>2 (

1< l<N
f l

0hl
0 .

W thus cannot decrease to2` within the simplex, and has to
reach a finite minimum somewhere on the boundary. Mo
over, one can show thatA is also bounded, except formar-
ginally supportable loads. We say the load isnot marginally
supportable if there exists a small neighborhood
(Fm

ext)1<m<Nf
in force spaceF within which all loads are

supportable. Let us now consider a situation in whichA is
not bounded. One can then find one direction along wh

FIG. 8. Aspect of simplex of variables satisfying affine co
straints like Eq.~7.1!, cut by the plane of the figure.W is constant
on parallel hyperplanes~sketched as dotted lines, orthogonal toF,
projection of the load direction onto the plane!. W reaches its mini-
mum at one extreme point at least~like A andB) or on ‘‘faces’’ or
‘‘edges,’’ included in an affine space of dimensionk, that are part of
the simplex boundary~like segmentAB). The hatched region is
forbidden by impenetrability constraints.
-

e

.

-

e

lly

-

f

h

displacements go to infinity withinA. Now let us assume the
load is not marginally supportable. One can apply a sm
load increment (dFm

ext)1<m<Nf
, such that (Fm

ext

1dFm
ext)1<m<Nf

is still supportable, with (dFm
ext)1<m<Nf

in
the direction for whichA is not bounded, which leads to
contradiction. Therefore the load has to be marginally s
portable ifA is not bounded.

4. Dual problem in bond force space

We now turn to the dual optimization problem, to whic
equilibrium contact forces are the solution, viz., problemP2:

Maximize Z~ f!52~ fuh0!52( lhl
0f l

with constraints in Eq.~7.2! and f>0.
~7.3!

We know that equilibrium displacements (u* ) and contact
forces (f* >0) respectively satisfy Eqs.~7.1! and ~7.2!, and
are such that

~ f* u~Gu* 2h0!!50. ~7.4!

Thus, any possible set of non-negative bond forcesf balanc-
ing the load is such that

~ fu~Gu* 2h0!!<05~ f* u~Gu* 2h0!!

on the one hand, and

~ fuGu* !5~GTfuu* !5~Fextuu* !

on the other, which entailsZ(f)<Z(f* ): f* is a solution to
problemP2.

Conversely, if one starts from problemP2 and considers a
solution f* , then it is possible to define anNf-vectoru* of
Lagrange parameters corresponding to constraints~7.2! and
an N-vector h of non-negative Lagrange parameters cor
sponding to constraintsf>0, such that

2h01Gu* 1h50. ~7.5!

Moreover,hl vanishes wheneverf l.0. This means thatu*
is actually a displacement vector abiding by Eq.~7.1!, and
Eq. ~7.5! entails that the Signorini condition, in the form
~7.4!, is also satisfied. We know then thatu* is a solution to
P1.

Equilibrium displacements and contact forces thus co
cide with the respective solutions toP1 and P2, a pair of
linear optimization problems in duality. We have shown the
following.

~1! If u* is a solution toP1, then it is possible to find a
solution f* to P2, Eq. ~7.4! being satisfied.

~2! If f* is a solution toP2, then it is possible to find a
solutionu* to P1, Eq. ~7.4! being satisfied.

~3! If u* and f* respectively abide by the constraints
optimization problemsP1 and P2, and if, in addition, Eq.
~7.4! @equivalent to the Signorini condition~3.1!# is satisfied,
thenu* and f* are respectively solutions toP1 andP2.

~4!The optimum values of the criteria are equal in bo
problems: condition~7.4! ensures thatW(u* )5Z(f* ).
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5. The uniqueness property

Within the affine space of bond forces satisfying E
~7.2!, constraintsf l>0 define a simplex, and, just as forP1,
the set of solutions toP2 is a convex partB of its boundary.
Let h denote the dimension of the affine space spanned bB.
SinceB is the set of possible equilibrium forces,h is in fact
the degree of force indeterminacy of the problem. Gen
cally, one has, from Sec. VI,h50, and the only solution to
problemP2 is an extreme point of the simplex of admissib
forces. We have thus shown thatin terms of forces the solu
tion is uniquely determined. This is a stronger conclusio
than the sole isostaticity of the problem established in S
VI: in general, contact forces are uniquely determinedonce
the list of contacts is known. In the case of a system of rigi
grains, with contact law~3.1!, dealt with within the ASD,the
list of force-carrying contacts itself~the list of bonds, among
those that are defineda priori in the reference configuration
for which neighboring grains will actually touch and exert
force on each other! is uniquely determined. Forces are car-
ried by contact structureS* , which was defined in connec
tion with the discussion of the solutions to problemP1, and,
if some mechanisms exist (k.0), the other contacts tha
might be created will not carry any force.

If the contact law is Eq.~3.1!, if geometrical changes
from a reference configuration are small enough for the A
to be valid, if the load is supportable~but not marginally so!,
then the system will reach an equilibrium state, which ap
from bounded displacements within convex setA ~which do
not changeW) is totally independent of all dynamical prop
erties of the system, and entirely determined by the geom
only.

6. Examples

SystemsA andB introduced in Sec. II were treated withi
the lattice model defined in Sec. IV B, with the ASD an
condition~3.1!. Structure SA1, once the random numbersd i
were known, was obtained as the uniquely determined lis
force-carrying contacts at equilibrium under the load defin
by Eq. ~2.18!. Within the ASD, it is possible to close tw
other contacts, e.g., those that belong to SA2. However,
will not transmit any force. Likewise, for specific values
the d i ’s, SB1 was obtained as the list of force-carrying co
tacts in systemB submitted to the load that is represented
Fig. 2~a!. It is possible to close some other contacts~such as
those that belong to SB2!, but they cannot carry~within the
ASD! any force. Uniquely determined force-carrying stru
tures, depending on the load, will possess a varying de
of displacement indeterminacyk. Once systemB, in addition
to the forces on the perimeter, was submitted to small~ran-
domly oriented! external forces exerted on each grain, th
isostatic structure SB2 was obtained.

In Ref. @9#, the triangular lattice model, as in Sec. IV B
was studied for isotropic loads. As an application of theglo-
bal minimization property, it was shown within the ASD~to
first order ina) that the maximum packing fraction of poly
disperse disks in the limit of large systems is equal to

Fmax5
p

2A3
~12ka!, ~7.6!
.

i-
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with k50.31460.003 in the case of a uniform distribution o
radii.

7. Minimal structures: Analogies with other problems

As equilibrium contact forces are the coordinates of
extreme point of the simplex of problemP2, a maximum set
of inequality contraintsf l>0 are simultaneously satisfied a
equalities,f l50. This means that force-carrying structureS*
is minimal with respect to the equilibrium requirement~7.2!.
In Sec. VI C, we invoked an iterative dilution process
define irreducible sets of self-balanced forces. Likewise,
can define minimal structures, such asS* , as irreducible by
further dilution, since it is impossible to require more bo
forces to vanish if the load is to be balanced. Any su
irreducible structureS might carry a unique set of bon
forces balancing the load; it geometrically determines o
solution to Eqs.~7.2!.

Recalling that we have defined a loading parameterQ, to
which all external forces are proportional, there exists
each minimal force-carrying structureS a set of coefficients
(b l

L)1< l<N , such that the forces carried byS that balance the
load are

f l5b l
SQ. ~7.7!

By definition, one has

b l
SÞ0 if l PS,

b l
S50 if l ¹S.

Among all minimal structuresS with non-negative coeffi-
cientsb l

S , S* minimizes

(
l PS

b l
Shl

0 .

Let us now recall the analogy with the problem of curre
transport on a resistor network, as introduced in Sec. V, w
the following constitutive law. To the requirement that co
tact forces are repulsive corresponds anorientation of the
bonds, which behave as diodes rather than resistors. B
a→b between nodesa and b carries some currenti ab>0
that is related to the potential differenceva2vb by the ana-
log of the Signorini condition:

i ab.0 if va2vb5vab
0 ,

i ab50 if va2vb,vab
0 . ~7.8!

The bond becomes a supraconductor~the analog of a rigid
contact! when the threshold potential differencevab

0 is
reached, and it is an insulator ifva2vb is smaller.

It is customary to define a scalar analog of the mechan
load by injecting some external currentI in one node, which
we denote asi, and extracting it from another, which w
denote aso. I is then the analog of the mechanical parame
Q. A minimal structure~i.e., one that cannot be further d
luted! to carry the current is apath from i to o. If its coeffi-
cientsb cannot be negative, it is adirected path, on which
the current flow respects thea priori orientation of the
bonds. On such a pathS, all bondsl PS carry the total cur-
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rent I; henceb l
S51 for all l PS. In the analogous scala

problem, the current is carried by the directed pathS* that
minimizes, among all directed pathsS from i to o, the crite-
rion

(
l PS

b l
Sv l

05(
l PS

v l
0 .

In the scalar problem, the criterion reduces to a sum
‘‘costs’’ associated with the bonds of the network.

The analogous problem toP2 in the scalar case is thus th
well-known minimum directed path~or directed polymer!
problem on a network@43#. This analogy was introduced i
@20# for problemP1, upon transforming the minimum pat
problem into the dual problem, which consists in maximizi
the potential dropv i2vo , knowing that in each bondl v l

cannot exceed the threshold valuev l
0 . The dual point of view

adopted here—the analogy for problemP2—stresses the
geometric origin of equilibrium forces as coefficients ch
acterizing the maximum localization of efforts onto structu
S* . Contact forces in granular packings have often be
studied in the recent literature@10,44,45#. It is interesting to
be able to define them as the solution to a well-defined
timization problem of random geometry@17#.

Some statistical properties of structuresS* were studied
in Refs.@9,15#, in the case of the 2D triangular lattice mode
as defined in Sec. IV B, with a uniform distribution ofd i ’s. It
was shown, in particular, for isotropic loads in the limit
large systems, that the density of force-carrying bonds te
to a nonvanishing limit, and the distribution of contact for
values was evaluated.

The statistical properties of the solution to the ‘‘direct
polymer’’ problem are related to those of directed perco
tion @43#. Likewise, one can expect, in the case, in particu
of a very wide distribution of values ofh0 in the mechanical
problem, the minimization problemP2 to be related to some
unilateral percolation problem. Such a percolation model
never been studied to our knowledge. It is ageometricprob-
lem, unlike generic central-force percolation@22#, for which
~in 2D at least! only the topology of a diluted structure ma
ters.

8. Some macroscopic results for the triangular lattice model

To see what macroscopic mechanical behavior might
sult from the properties stated in this section, we briefly
call here some results obtained by numerical simulation
the triangular lattice model@17#, as presented in Sec. IV B
with a uniform distribution of parametersd i @Eq. ~4.1!#.

Samples of up to 12 600 disks were submitted to vary
states of stress. The following inequalities, in which coor
nate label 1 corresponds to one of the three directions
dense rows in the triangular lattice, and compressive stre
are conventionally positive, define the domain of suppor
loads, as macroscopically expressed in terms of stresse

s22<3s11,
~7.9!

2
s22

A3
<s12<

s22

A3
.

f

-

n

-

ds

-
r,

s

-
-
f

g
-
of
es
d

All intensive quantities, like, e.g., distributions of force va
ues, density of the contact structure, distribution of cont
orientations, etc., were found to possess well-defined th
modynamic limits, independently of the details of the boun
ary conditions, provided a uniform state of stress is impos
and the stress tensors= satisfies conditions~7.9! as strict
inequalities. Correlation lengths or, in other words, sizes
representative volume elements or of independent s
systems, are finite, but appear to diverge as marginally s
ported loads@for which one of conditions~7.9! holds as an
equality# are approached.

As in Sec. IV 3, we take the undisturbed lattice, in whi
the spacing between sites is equal to the maximum disk
ametera, as the reference state, a strain tensore= can be
identified. It is related to displacement fieldu by

eab52
1

2S ]ua

]xb
1

]ub

]xa
D , ~7.10!

and the potential energy per unit surface area is

W52sabeba52s= :e= ~7.11!

~summation over repeated indices implied!.
Coordinates of the tensore= are found to be expressible a

linear combinations of the average of bond elongationsdul
for the three bond orientations of the triangular lattice. Ine=
space~three-dimensional for a 2D system!, impenetrability
conditions define in the thermodynamic limit a strictly co
vex accessible domainD, limited by a smooth surfaceS, the
equation of which we denote as

f ~e= !50, ~7.12!

while the interior of accessible regionD corresponds to the
strict inequality

f ~e= !,0.

As a macroscopic consequence of the variational prope
stated in Sec. VII, the relationship between tensorss= ande=
is the following:

s i j 5H l
] f

]e i j
with l>0 if f ~e= !50,

0 if f ~e= !,0,

~7.13!

Wherever the granular system transmits stress, the valuee=
is as far as possible in the direction ofs= within D, i.e., where
the tangent plane to its boundaryS is orthogonal tos= , thus
minimizing potential energy~7.11!.

D is unbounded in the direction of nonsupported loa
Strains go to infinity on the surfaceS when the stress tenso
approaches one of the marginally supported directions.S has
three asymptotic planes, respectively orthogonal to th
three marginally supported load directions.

The one-to-one correspondence between supported s
directions on the one hand, and strain tensors such t
f (e= )50 on the other hand, is a macroscopic translation
the uniqueness property stated in Sec. VII B 5. The poten
energy density has a finite thermodynamic limit@a result that
generalizes to nonisotropic states of stress the one of
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~7.6!#, and possible variations ofe= within the convex setA
discussed in Sec. VII B 3 shrink to a vanishing range (e= be-
comes uniquely determined! as the system size grows.

The constitutive law~7.13! can be used to solve for stres
and displacement fields whenever a sample of the model
terial is submitted to some external forces that do not lea
unbounded displacements and overall failure. The field ol
values should be obtained on solving the full boundary va
problem.

C. Systems with bounded tensile forces

If the unilateral contact law~3.1! is replaced by Eq.~3.5!,
the remarkable properties stated above in Sec. VII B are
Let us illustrate this with a simple example. Consider t
system depicted in Fig. 9, to be dealt with, within the AS
as a triangular lattice model in the sense of Sec. IV B,
contact law being~3.5!. Only one disk is mobile~no. 1!, and
we first consider the case of a vertical force of intensityFy

oriented downward as in the figure, keepingFx50. ~Later in
Sec. IX we come back to this simple example and discus
behavior whenFx is altered.! Two equilibrium positions are
possible: disk 1 might be in contact either with disks 2 an
or with 3 and 4. As grains are rigid and exert normal forc
on one another only when they exactly touch, the problem
isostatic in both equilibrium configurations, in agreeme
with the general property of Sec. VI. The load, defined w
Fy.0, is always supportable on structureS1, consisting of
bonds 1-2 and 1-3, and it is also supportable on structureS2,
consisting of bonds 1-3 and 1-4 as long asFy, f 0A3.

Thus, for 0,Fy, f 0A3, even within the ASD,the equi-
librium state and the list of force-carrying contacts are n
uniquely determined. WhetherS1 or S2 will be chosen de-
pends on the trajectory of disk 1 from its initial~reference!
position, in which it does not have any contact.

Likewise, supportable loads are not necessarily su
ported. To check this, let us remove disk 2. In its motio
disk 1 might come into contact with both 3 and 4, an
provided 0,Q, f 0A3, reach an equilibrium position, main
taining those two contacts. However, it might also ne
meet disk 4, and find a trajectory past disk 3 on which
potential energy will keep decreasing forever.

FIG. 9. A small sample of the triangular lattice model, in whi
the only mobile disk, marked 1, is slightly smaller than disks 2,
and 4, and is submitted to an external force. Disk 1 is shown in
possible equilibrium position, in contact with 2 and 3. The oth
one is sketched with a dotted line.
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D. Smooth, convex interaction potentials

In the case of the elastic contact law~3.6! within the ASD
all properties of convex problems enumerated in Sec. VI
are valid. Let us state the ‘‘elastic’’ versions of the ‘‘rigid’
optimization problems of Sec. VII B.P1 is simply replaced
by problemP 1

el : Minimize Wtot defined in Eq.~3.8!, while
contact forces are the solution to problemP 2

el :

Maximize2(
l

S hl
0f l2

m

m11
K21/mf l

(m11)/mD
with constraints in Eq.~7.2! and f>0. ~7.14!

The function of the contact forcef that appears within the
sum is the opposite of the Legendre transform of the ela
energyw, regarded as a function of relative displacementdu,
i.e., f du2w(du), taken with f 5dw/d(du). Thus, solving
P 2

el amounts to ‘‘minimizing the complementary energy,’’
common procedure to find the forces in an elastic proble

In fact, one could have defined a potential energy in
rigid case equal to1` if grains interpenetrate, and treate
rigid problems exactly like elastic ones, constraint~7.1! be-
ing taken care of by the definition of the potential. If th
region in phase space that is forbidden by the constrain
convex, then such a potential can still be regarded as a
vex function. Both the condition~3.1! and elastic law~3.6!
are then expressed by

f P]w~du!,

in which ]w(du) denotes thesubdifferentialof w at du, i.e.,
the set of allf such thatw(du8)>w(du)1 f (du82du) for
anydu8. This mathematical possibility of unifying rigid an
elastic laws is specific to convex problems. This is the p
cise meaning of property 5 cited in Sec. VII A. Here, w
preferred to resort to a separate presentation of the rigid
in Sec. VII B, to stress the physical consequences of
variational properties. The reader may refer to@46# for a
more systematic approach.

ComparingP2 and P 2
el , as defined by Eqs.~7.3! and

~7.14!, one may expect the following behavior for the dist
bution of contact forces, as a set of grains with elastic c
tacts is submitted to a constant load but the stiffness cons
K is gradually reduced.~Similarly, one could also increas
Q, keepingK constant.! When K is very large, the elastic
term is negligible in comparison withZ(f), and the values of
the forces should coincide with the~unique! rigid contact
solution ofP2. Thus the contact structure should barely s
fice to carry the load~isostatic problem! and the forces
should exhibit the characteristic disorder of granular s
tems, with large fluctuations, force chains, etc. On the ot
hand, let us assume that the list of possible contacts~struc-
ture S0) is well coordinated; that there are many more co
tacts that are easy to close upon increasing the confin
forces or decreasing the contact stiffness parameters. T
in the limit of small K, Z(f) will, in turn, become small in
comparison with the elastic energy. The elastic term tend
share the forces between contacts equally. Thus, a na
distribution of force values is expected in this limit, and sp
tial heterogeneities should be strongly reduced. Know
that the minimum structureS* and the complete list of pos

,
e
r
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sible contactsS0 are of comparable densities, the order
magnitude of the average forcef 0 does not change as grain
are made softer. The two extreme regimes of stiff and s
contacts should thus be defined respectively by the co
tions K@ f 0 /h0

m andK! f 0 /h0
m , involving a typical intersti-

tial distanceh0.
Those two limits, and the transition regime in which t

contact density increases, have been observed@16# on the 2D
triangular lattice model, as defined in Sec. IV B, with conta
law ~3.6!.

E. Remarks: The ‘‘elasticity’’ of rigid grains

As announced beforehand, we have exhibited in this s
tion model granular systems for which, at the expense
several assumptions, including the validity of the ASD, m
chanical properties are entirely determined by geometry.
have seen that the distinction between systems made of
or deformable grains is not necessarily as important as
might have expected: similar potential energy minimizat
properties can be stated, the limit of large contact stiffnes
can safely be taken without any singularity~Sec. VII D!, and
macroscopic stress-strain relationships can be written
some systems of rigid grains, as recalled in Sec. VII B 8. T
difference between the systems where the search for an e
librium state is a convex minimization problem~in which
case the properties listed in Sec. VII A are satisfied! and the
others~such as the example of Sec. VII C! is finally more
relevant.

The constitutive law~7.13! expresses a one-to-one corr
spondence between the direction of the stress tensors= and
the strain tensore= , which is restricted to belong to the su
faceS. It is quite similar to a macroscopic elastic law, ev
though it applies to systems of rigid disks. The response
supported stress increment will be reversible. If this inc
mentds is in the direction of the preexisting stress tensors= ,
then no additional displacement or stress will result for rig
grains. For deformable grains, if contact law~3.1! is replaced
by Eq. ~3.6!, a small deformation, inversely proportional
constantK, will follow. If, on the other hand,ds is orthogo-
nal to the initial stress tensor, its application will entail
small strain incrementde, such that the new strain tenso
will be exactly the point ofS where the orthogonal directio
is that of the new stress tensor. In this second case, the
parent elastic modulus is thus inversely proportional to
curvature of surfaceS.

In spite of the analogy presented in Sec. VII B 7 betwe
the backbone of the force-carrying structure and co
minimizing directed paths for scalar transport, the statist
properties of those two systems are quite different. In ag
ment with various results on disordered systems of gra
@8,47#, the triangular lattice system was found@15,9,17# to
possess a standard thermodynamic limit: intensive quant
like the density of the backbone, the strains, and the dis
bution of contact force values have limits in the limit of larg
system size~except for marginally supported loads!. On the
other hand, unlike the force-carrying structure in the m
chanical problem we have been studying, the optimal
rected path in the corresponding scalar problem is a crit
object.
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The validity of the ASD—which might at first sight ap
pear as a mere technical aspect—is finally a crucial ingre
ent of the model granular systems that we are studying h
The next section examines some stability properties that
important as soon as one does not resort to the approx
tion.

VIII. OUTSIDE THE ASD: QUESTIONS OF STABILITY

We now enforce on physically acceptable equilibriu
states another requirement: that they should bestable. We
limit ourselves to the cases when stability can be discus
in terms of a potential energy. If the equilibrium state is
local minimum of the potential energy, then there exists
region of finite extent in displacement space, around equi
rium positions, within which the system is spontaneou
attracted to the equilibrium configuration.

Within the ASD, one can discuss only potential variatio
that are of first order in displacements. When floppy mod
exist (k.k0), they appear as marginally unstable and o
cannot tell whether, to higher orders, they actually desta
lize the equilibrium configuration. The mechanical respon
to small perturbations or load increments is strongly dep
dent on these stability questions.

In general, we will show, with examples~Sec. VIII A!,
that the answer might depend on quite specific geometr
features of the granular system and on the contact law.
are only able to give general answers for spheres or disks
shown in Sec. VIII B. Section VIII C discusses some con
quences on the geometry and coordination of granular pa
ings at equilibrium, and on the macroscopic mechanical
havior.

A. Simple examples

We consider rigid frictionless particles of various shap
and discuss the stability of simple configurations, which d
pends on the ability of contacts to withstand tension and
the shape of the grains.

1. Bond alignments

Assume three spheres, or three disks in 2D, to have t
centers aligned as in Fig. 10, the two extreme ones be
submitted to opposite forces in the direction of the line
centers. Let us discuss the problem in 2D. The determina
of contact forces is an isostatic problem, and there is, a
from rigid body motions, a trivial mechanism correspondi
to free lateral motion of the middle disk 2. This is of cour
well known to lead to the familiar buckling instability if on
pushes the extreme disks toward each other, and to be s
if one pulls on them, provided the contacts can resist ten
forces. In the latter case, assuming one controls the fo
parallel to line 1-2 exerted on particles 1 and 3, while th
position in the other direction is fixed, the system will r
spondelastically to a small additional force exerted on dis
2, even though the contact law is rigid. After the syste
reaches its new equilibrium state, the orientation of conta
is such that the new load is orthogonal to the floppy mo
Specifically, ifg is the lateral force pulling disk 2 away from
the line 1-3, and iff denotes the external force exerted on
and 3, the new position of the center of disk 2 is such th
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assuming equality of the three radii, the angleu0 between
1-3 and 1-2~Fig. 10! is given by

u05tan21S g

2 f D ,

while contact forces~tensile, and therefore negative! are

f 125 f 2352 f cos~u0!.

The potential energy as a function ofu (u parametrizes the
free motion that maintains the two contacts! reads as

W522a f cos~u!2ag sin~u!52aA4 f 21g2cos~u2u0!,

and has its minimum foru5u0. This elastic behavior is simi
lar to that of a rigid string under tension, which will defor
in response to lateral forces.

On carrying out the same calculations in the case of co
pressive forces, withf ,0, one will notice thatg and u0,
corresponding to the equilibrium position of disk 2, are no
of opposite signs. One then has

W5aA4 f 21g2cos~u2u0!,

which is maximizedin the unstable equilibrium positionu
5u0.

In Sec. VIII B, we show that the conclusions reached
this simple example are general: any floppy mode in a s
tem of disks or spheres that admits only compressive con
forces leads to an instability. If, on the contrary, all conta
forces are in fact tensile, the system being thus analogou
a network of tight strings, any floppy mode is stable, and
elastic response to small load increments can be observ

Let us now replace disk 2 by a particle presenting conc
surfaces toward disks 1 and 3, as shown in Fig. 11. T
system is similar to that of Fig. 10; the free lateral motion
the middle particle, maintaining the contacts, is a mec
nism. It is not difficult to show, however, that the configur
tion of Fig. 11 has, compared to the alignment of dis
opposite stability properties: the mechanism is stable

FIG. 10. An alignment of three spheres~left!, the middle one
touching the other two. Spheres 1 and 3 are submitted to equa
opposite forces along the line of centers. The new equilibrium c
figuration, upon exerting a lateral forceg on the middle sphere, is
shown on the right.
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compressive forces, unstable for tensile ones. Thus stab
properties are quite sensitive to particle shape.

2. Arches

Systems submitted to gravity provide other familiar e
amples of nonrigid equilibrium states. A string of circular
spherical particles, each of them tied to two neighbors b
frictionless contact condition that supports tension, beha
as a chain, and will eventually adopt a stable equilibriu
configuration if one fixes its two extremities and lets
dangle under its weight. The number of mechanisms in
system is equal to the number of free particles.

The analogous system to the chain in which conta
transmit compressive forces is the arch, Fig. 12. The gen
result for spheres entails that all arches made of spheres
unstable. However, one usually builds arches with appro
ately shaped stones, e.g., carving them to share common
lateral surfaces with their neighbors, as in Fig. 12. Such
arch is a system that possesses one floppy mode per s
~still assuming no friction!, but its geometry might be ad
equately chosen to support the load. In such a case, any
motion of the stones, which slide on their flat common s
faces, all contacts being maintained, does not change
potential energy. One thus has an example ofmarginal sta-
bility. Such an arch is able to carry only the one particu

nd
-

FIG. 11. An alignment like that of Fig. 10, the middle sphe
being replaced by an object turning concave parts of its surf
toward spheres 1 and 3.

FIG. 12. An arch built with stones sharing flat lateral surfac



s

te
on

e
th
re

qu
l-
n

e
ys
a
c
tia
ha
is
le
s
ng
o

ad

de
o
c
u-
rc
fe
he
ig
wi

qui-
is

ir-

um
m is
a

the
ume

-
on
is to

e to

red

-

he

ly

t a

e,
r-
e
se

he

i
bl

PRE 61 6823GEOMETRIC ORIGIN OF MECHANICAL PROPERTIES . . .
load for which it was specifically designed.~Any amount of
friction, however, stabilizes the system.!

3. A stable mechanism with strictly convex cohesionless grain

In view of the previous examples, one might be temp
to infer that, when contacts support only compressi
mechanisms can be stable with concave grains~Fig. 11!, are
sometimes marginally stable with flat surfaces~Fig. 12!, but
are always unstable with strictly convex grains~Fig. 10!.
This is not true, however, as shown by the simple exampl
Fig. 13. We are not aware of other general answers to
question of stability than the ones that are given for sphe
below.

B. General results for spheres and disks

1. Tensile contact forces (systems of cables)

In the case when all contacts carry a tensile force at e
librium, then stability is immediately proved once it is rea
ized, as remarked in Sec. VII A, that minimizing the pote
tial energy is a convex optimization problem~see property 1
stated in Sec. VII A!.

Just as for the simple example of Fig. 10, floppy mod
can exist in stable equilibrium configurations. Thus the s
tem will respond elastically to small load increments th
provoke small motions of these floppy modes. Applying su
load increments amounts to slightly deforming the poten
energy landscape on the manifold of configurations t
maintain the initially existing contacts. A new minimum
found, close to the previous one. Systems of rigid cab
whatever the level of deformation, should therefore posses
exactly the same kind of elasticity, due to preexisti
stresses, as assemblies of rigid frictionless particles with
cohesionwithin the ASD~whose mechanical response to lo
increments was discussed in Sec. VII E!.

Those properties were in fact discussed by Alexan
@40#, in his monograph on the elasticity of various kinds
networks and amorphous systems, in the case when the
tact law iselastic. Alexander pointed out that stable config
rations are not necessarily rigid. He stressed that fo
carrying bonds or contacts always have a stabilizing ef
when they transmit a traction, and a destabilizing one w
they transmit a compression. Our present study here m
be regarded as complementary to his, since we deal
rigid contacts.

FIG. 13. The upper grain 1 relies on two of its neighbors and
submitted to its weight, oriented downward. Its rotation is a sta
floppy mode.
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2. Cohesionless grains

In the absence of tensile forces in the contacts, an e
librium configuration of rigid, frictionless disks or spheres
necessarily unstableif the backbone is not rigid. We shall
prove this by yet another application of the theorem of v
tual power, as follows.

We assume a packing of spheres to be in equilibri
under a prescribed load. Spheres are rigid, and the proble
therefore isostatic,h50. Flat walls can also exist, e.g., as
device to enforce some kind of boundary condition on
packing, but we assume that they cannot rotate. We ass
there is at least one mechanism:k>1. Consequently, it is
possible to move the grains~and the walls! while maintain-
ing the whole list of contacts.@The possibility that a mecha
nism could exist for the considered equilibrium configurati
alone and disappear as soon as the grains are displaced
be discarded as nongeneric. This would, in particular, du
Eq. ~2.16!, entail h>1.# We now study the variation of the
potential energy in one such motion, with a ‘‘time’’t param-
etrizing the trajectories, and show that it decreases.

Objects do not rotate in this motion~this is an assumption
for walls, and rotations of frictionless spheres are igno
anyway!. Particlei has a time-dependent velocityV i(t), and
initially, in the equilibrium configuration from which the mo
tion starts att50, touches its neighborj at a point A i j

0 ,
where the normal unit vector to its surface, pointing to t
center of j, is ni j

0 , the equilibrium contact force beingf i j .
Let Ai j (t) denote the material point of the surface of graini
that was atAi j

0 initially. Similarly, following the material
motion of j, one definesAji (t), which does not coincide in
general withAi j (t). It is possible at each timet to apply the
theorem of virtual power, thus evaluatingW8(t), the time
derivative of the potential energyW at timet, as follows. The
definition of a structure, in Sec. II, was in fact complete
arbitrary. Here, let us use this one: at timet, although objects
i and j that are in contact effectively touch each other a
different point, define a bond to exist betweenAi j (t) and
Aji (t), oriented byni j

0 , which, because objects do not rotat
is still carried by the common normal direction to the su
faces ofi and j at these two points. This structure might b
used to define virtual, fictitious bond forces, that we choo
equal to the initial equilibrium contact forces, i.e.,f i j , car-
ried by ni j

0 in the bond betweenAi j (t) and Aji (t). These
forces are now used in the theorem of virtual work, with t
real velocities. This is perfectly valid, because for eacht ~1!
the virtual internal forces balance the constant load;~2! in
the bond betweeni and j, the force exerted oni is still equal
to the opposite of the force exerted onj.

One obtains

W8~ t !5(
i , j

f i j ni j
0
•@V j~ t !2V i~ t !#,

the sum running over all bonds. Asf i j ni j
0 does not depend on

t, this is easily integrated. Denoting asUi j (t) the vector of
origin Ai j (t) and extremityAji (t), the net variation of poten-
tial energy at timet from the beginning of the motion is

W~ t !2W~0!5(
i , j

f i j ni j
0
•Ui j ~ t !. ~8.1!

s
e
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In the motion,Ai j (t) and Aji (t) are still extreme points o
solids i and j in the respective directionsni j

0 and 2ni j
0 . As

spheresi and j have stayed in contact, it follows that, a
shown on Fig. 14, the contribution of bondi 2 j to Eq. ~8.1!
is strictly negative, unlessAi j (t)5Aji (t), in which case it is
zero. The same conclusion holds true for a contact betwe
sphere and a flat wall that does not rotate. Consequently,
must have

W~ t !2W~0!,0,

unless all intergranular contacts that carry nonvanish
equilibrium forces are maintained, in the motion, via t
same material points. This latter condition means that
backbone of the contact structure in the equilibrium confi
ration moves as a rigid body.

Mechanisms that affect only grains that do not carry a
force, without altering the geometry of the backbone, w
not, of course, change the value ofW and lead to instabili-
ties. Otherwise, the instability is always present. We ha
shown thatthe backbone of the contact structure, in a stable
equilibrium configuration of a packing of rigid, frictionles
spheres that do not support tensile forces in the contactis
devoid of mechanisms other than rigid body motions: k5k0.
As we already knew, from Sec. VI, that it cannot poss
self-balanced contact forces (h50), one reaches the conclu
sion thatit is an isostatic structure.

C. Consequences and discussion

1. Coordination of packings

The isostaticity of the force-carrying structure in packin
of rigid frictionlesssphereswith contact law~3.1! thus re-
sults from a stability analysis. The opposite inequality to
ones established in Sec. VI D can be stated in this case:
hasN>Nf , and consequently,N5Nf , on the backbone o
the contact structure. For large systems, the absenc
floppy mode implies alower boundon the coordination num
ber:

c>2d on the backbone.

FIG. 14. Sketch of the position at timet of two spheres in
contact.
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This is equal to upper bound~6.4!; hence the equalityc
52d. However, for frictionless grains with different shape
or for spheres with cohesion, one cannot in general exp
inequality~6.4! to hold as an equality, even on the backbo
alone.

Returning to cohesionless packings of spheres, when e
one is submitted to an external force, it has to belong to
force-carrying backbone, and the whole system satisfieN
5Nf ~or, asymptotically for large sizes,c52d). This hap-
pens in systemA treated without resorting to the ASD. Th
force-carrying structure that was obtained, SA2, is isost
and spans the whole system. When external forces are tr
mitted from the boundary, as in systemC, floppy modes can
exist, typically as isolated spheres, like disks 10 and 14
Fig. 2~b!, or small sets of spheres, that are not connected
insufficiently connected to the backbone. In not too wide
polydispersed systems of spheres, regions that are to
shielded from force transmission are usually quite small. A
cording to our experience in numerical simulations, if t
radio of the largest to the smallest radius is 2 in a polyd
perse assembly of disks, then one very rarely sees more
three disks together in such regions. In 2D, ringlike arran
ments surrounding disks that carry no force, such as 29
31-15-6-5-13-28 and 11-3-9-22-23-24 in Fig. 2~b!, cannot
easily be made very large: the curvature of the ‘‘ring’’ wou
then decrease, increasing the risk of inward buckling.

2. Lattice models with and without the ASD

The triangular lattice model as defined in Sec. IV B,
which systemsA andB are particular samples, provides vivi
examples of the difference between tensile contacts@systems
of strings, satisfying Eq.~3.3!# and compressive ones@rigid
grains obeying Eq.~3.1!#, once dealt with outside the ASD
Within the ASD, both types of system share the same pr
erties, and an equilibrium state of one of them can
mapped onto an equilibrium state of the other, as follows
the reference state, rigid disks do not touch, sincehi j

0

5(a/2)(d i1d j )a.0. This can be mapped onto a string ne
work system, in which the contact law is~3.3!, on replacing
each d i by 2d i and attributing the lengtha@11a(d i
1d j )/2# to the string joiningi andj. On reversing the sign o
external forces, an exact correspondence is achieved betw
equilibrium states.

Figure 15 shows the force-carrying structure, as obtai
within the ASD, in a hexagonal sample~for one random
choice ofd i values, drawn according to a uniform distribu
tion! of 1141 disks. This system is submitted to an isotro
pressure via an imposed homogeneous shrinking of the
rimeter. As established in Sec. VII B, such a structure
within the ASD, dependent only on the random paramet
d i . The dynamics ruling the motion of the particles from t
reference to the equilibrium positions and the actual value
a are both irrelevant. In the corresponding system of strin
submitted to isotropic tension, exactly the same force pat
is obtained at equilibrium. We denote asS* the backbone of
the contact structure, as displayed in Fig. 15. Just as in st
ture SB1, which carries the force in a similar sample
smaller size, many disks do not belong toS* , which contains
only 619 of them, thus possessing 1239 degrees of free
~counting the one of the ‘‘wall’’!. Many floppy modes are
present; 381 of them are associated with bond alignme
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~disks having two contacts in opposite positions!, and the
remaining five are more collective~like the one of Fig. 5!.
Some statistical properties ofSstructures in the large system
limit were studied in@15#.

We numerically determined force-carrying structures
the rigid disk system under compression, and in the co
sponding system of strings under tension, without the AS
Those structures that were obtained witha51/48 ~this value
is now relevant! are respectively denoted as SC and ST, a
shown in Figs. 16 and 17. Slight distortions of the regu
triangular lattice, although not apparent on the figures, w
taken into account in the calculations. From Sec. VII,
know that ST is still determined only by the system geo
etry: since forces are the solution to a convex optimizat
problem, the uniqueness property still holds. This is not
case for SC, and the result now depends on the actual
namics~the rule that was adopted to move the disks to th
final equilibrium positions!. The calculation was carried ou
with the ‘‘lubricated granular dynamics’’ method of Ref
@15,9#.

FIG. 15. Triangular lattice model, within the ASD: force
carrying structureS* in a hexagonal sample submitted to an isot
pically compacting load. Linewidths are proportional to force inte
sities. The very same structure is observed in a correspon
system of strings undergoing isotropic tension.

FIG. 16. Structure SC that replacesS* ouside the ASD in the
case of contacts resisting compression.
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As expected, SC is devoid of mechanisms: it is an is
tatic structure, with 1052 disks, 2105 degrees of freedo
and exactly 2105 contacts. Only 89 grains out of the to
number 1141 do not belong to SC. Most of them are isola
grains, or pairs of neighbors~slightly larger regions shielded
from the forces appear near the perimeter, due to a boun
effect!.

On the other hand, ST stays more tenuous, with 840 d
only, and 1401 contacts. Thus 280 floppy modes still exist
ST, 232 of which are simple bond alignments and 48
collective.

In spite of these differences between the densities ofS* ,
SC, and ST, it does appear in the figures that the spa
distributions of the forces are very similar, the strong
‘‘force chains’’ remaining unaltered. The distributions o
force values inS* and SC in the limit of large systems wer
evaluated in Ref.@15# and shown to coincide, within statis
tical uncertainties, except for the small forces that appea
SC in the additional contacts created by the buckling ins
bilities in S* . Thus, resorting to the ASD is quite a legitima
procedure, provideda is small enough to allow one to regar
the differences between SC or ST on the one hand, andS*
on the other as refinements that can be neglected.

In the limit a→0, any contact force on SC is expected
tend to its value inS* , although the density of force-carryin
contacts is discontinuous. In the system of strings under
sion, on the other hand, mechanisms do not lead to insta
ties, and the density of the backbone itself should conti
ously approach that ofS* asa→0.

3. Role of grain shape: are spheres special?

We have seen that it is necessary to examine question
stability beyond the ASD, to find qualitative differences b
tween intergranular contacts that resist compression
cables that resist tension, and between spheres and
shapes. Of course, one expects macroscopic propertie
granular assemblies to smoothly depend on grain sh
packings of nearly spherical grains will resemble packings
spheres. Experimentally, it has sometimes been observed
systems of spheres, in a quasistatic experiment, yield par
larly noisy responses. It is also empirically known in civ
engineering that granulates made of smooth and rotund

-
-
ng

FIG. 17. Structure ST that replaces SC for an analogous sys
of cables resisting tension.
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ticles, like river-bed gravel, are especially unstable and pr
to large plastic deformations. Unfortunately, detailed data
the microscopic level on nonspherical grains close to eq
librium are scarce.

Although detailed analyses of such features are lack
and our study of granulate stability should be extended to
case of spheres with friction, one might speculate that s
particular behaviors of rotund objects could be related to
specific property we have established here: whenever s
motion is smoothly initiated~i.e., with a very small initial
acceleration!, while existing force-carrying contacts ar
maintained, then it will entail some loss of potential ener
and thus accelerate further. Hence probably the jerky as
of system trajectories in configuration space.

Section IX discusses, precisely, when and how a sys
jumps from one equilibrium state to another.

IX. MECHANICAL RESPONSE TO LOAD INCREMENTS:
TOWARDS MACROSCOPIC BEHAVIOR

So far, we have mainly dwelt on mechanical properties
model granular systems. Those can be proved directly.
wish now to discuss possible macroscopic consequence
terms of the constitutive laws that are relied upon in a c
tinuum mechanics description. We thus have to infer som
the properties of granular packings in the limit of large s
tems. To be quantitative, some statistical knowledge of
geometry of large granular systems is needed, which requ
experiments or numerical simulations. Here, as we do
present new experimental or statistical studies, we shall
cus on qualitative properties, extrapolating from the char
teristics of finite systems we have been presenting so far,
exploiting some recent numerical results, especially thos
Ref. @17#, recalled in Sec. VII B 8.

Some macroscopic aspects of granular mechanics ar
called in Sec. IX A. Possible origins of plasticity are di
cussed in Sec. IX B, in relation to grain-level characteristi
Section IX C examines some consequences of the strong
staticity property of systems of frictionless spheres with
cohesion, in which case some response functions to load
crements are related to the operatorG, defined in Sec. II in
relation to Eq.~2.12!, corresponding to the isostatic stru
ture. Section IX D exploits the results of Ref.@17#, deriving
the form of the macroscopic equations to be solved whe
small load increment is applied. Finally, these results
compared, in Sec. IX E, to some other approaches and t
ries, which have been put forward by several authors in
recent literature, at both the microscopic@33–35# and the
continuum@11–14# levels.

A. Macroscopic granular mechanics: Known features,
conflicting models

A classical way~see, e.g., Ref.@19#! to study the macro-
scopic mechanics of granulates is to submit a sample
triaxial test. Such a device is designed to impose a unifo
state of stress throughout the sample. It does not matter
our discussion, whether this macroscopic stress is impo
via a fluid pressing on a flexible membrane~as in a labora-
tory apparatus, for lateral confinement! or via control of the
position of a rigid wall~as in some numerical simulations!.
We just need to remember that a varying load is impos
e
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and depends on two parametersp and q, the axial stress
being equal top1q and the lateral one top ~see Fig. 18!. A
typical experiment consists in gradually increasingq at con-
stantp. One may then observe the resulting strains. The c
sical elastoplastic constitutive laws that are applied to gra
lar materials are incremental, which means that they do
relate stresses and strains directly, but predict the increm
of strain resulting from an increment of stress, given t
current state of the system~the definition of which might
require other, ‘‘internal’’ variables!. Cycling forces of small
amplitude usually yield loops with some amount of hyst
esis in the stress-strain plane. The surface area of such a
asOABO in Fig. 19 is the plastically dissipated energy a
sociated with deviatoric stresses~to which the work due to
volume changes has to be added to get the total pla
work!.

In marked contrast with classical soil mechanics a
proaches, some authors recently proposed a new typ

FIG. 18. The triaxial experiment.

FIG. 19. Schematic aspect of response to cyclic variationsq
in the e22-q plane.
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macroscopic mechanical description for the statics of gra
lar packings@11–14#. According to them, resorting to strai
variables should be avoided and one should look for dir
relationships between the components of the stress tenso
that it is possible to determine the whole stress field in
granular sample by solving hyperbolic second-order par
differential equations. These, like wave equations, poss
characteristics, preferred directions along which they red
to simpler, first-order forms. To solve the problem, one m
integrate along the characteristics that emerge from ev
point where some external force is applied. Consequently
a packing in which the forces exerted on the top bound
~wall or set of particles! are known, a perturbation~external
force increment! will propagatedownward, but will not be
felt above the point where it is applied. The exact relat
between stresses to be used should then depend on the
process by which the sample was made. If the current st
level is changed, by, say, a manipulation of the bound
conditions, as in the triaxial test, then the granular sys
rearranges until the new constitutive relation, correspond
to its new state, agrees with the new externally impo
stress values. These theories, in their current state of de
opment, do not predict the extent to which the system ha
rearrange, or, in other words, the magnitude of the ensu
strain increment. It has recently been proposed@35# that iso-
staticity could justify such theories for frictionless asse
blies of grains. These suggestions are discussed in Sec.
below.

We now turn to a discussion of some possible mic
scopic origins of plastic dissipation.

B. Origins of plastic dissipation

When a given supported external load places the sys
in a uniquely determined equilibrium state, one has to exp
a mechanical behavior devoid of plastic dissipation. Hys
esis loops like those of Fig. 19 cannot occur. Plasticity
related to the lack of uniqueness of equilibrium states. At
level of continuum mechanics, it is sometimes termed ‘‘
ternal friction,’’ since the material behaves as if differe
layers of matter slid on one another with friction within th
bulk of the sample. We have thus identified two microsco
origins of internal friction in systems of frictionless grains:
~1! bounded tensile forces in the contacts~as in Sec. VI C!;
~2! rearrangements of finite extent~i.e., the ASD is no longer
valid! between equilibrium position of assemblies of sphe
cal grains.

Let us illustrate these different behaviors on the sim
example of Fig. 9~Sec. VI C!. Starting from an equilibrium
configuration in which the external force on disk 1, in co
tact with 2 and 3, is vertical, let us gradually increase
horizontal componentFx . We first discuss the problem
within the ASD. It is then a particular example ofP1 dis-
cussed in Sec. VII, a linear optimization problem with tw
unknowns~the coordinates of disk 1!. In fact, the simplex
within which potential energyW has to be minimized is ex
actly the one that was shown in Fig. 8. PointsA andB in that
figure are, respectively, the equilibrium positions of the c
ter of disk 1 when it is in contact with 2 and 3, and with
and 4. Changes from one position to the other happen w
the direction ofF is orthogonal to that of segmentAB. One
u-
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may monitor the abscissa of the mobile disk,x, which, as
presented in Fig. 20, is related to loading parameterQ
5Fy /Fx via a steplike function. In analogy with this problem
of rigid grains, one may build a system of rigid cables~re-
sisting tension, but not compression!, which, if treated within
the ASD, yields exactly the same simplex of accessible c
figurations, the same optimization problem (P1), as that of
Fig. 8. This system of cables is shown in Fig. 21. Node 1
now tied to 2, 3, and 4 by cables that are slightly longer th
the common distance between 2 and 3 and between 3 an

Outside the ASD, the potential minimization problem f
the system of cables is no longer a linear optimization pr
lem, but, according to the general properties discussed
Sec. VIII, it is still a convex problem. In the plane of th
coordinates of node 1, the simplex of Fig. 8 changes int
domain limited by curved faces, as shown in Fig. 22. T
curvature of the faces being oriented inward, this domain
accessible configuration is convex.

When the orientation of forceF is such that, in Fig. 22,
the direction of constant potential energy lines lies betwe
those of tangents to the accessible domain inA and B, the
equilibrium position is a point on arcAB, and only one cable

FIG. 20. Loading parameterQ5Fy /Fx versus coordinatex of
the mobile disk of the system of Fig. 9.

FIG. 21. System of cables equivalent, within the ASD, to t
system of disks of Fig. 9, with the same values of external forc
Here, the cables joining 1 to 2 and 3 are taut, while the one join
1 to 4 is not.
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is taut, the one joining 1 to 3. In this case, the motion alo
arcAB is a mechanism, but stability is maintained, just as
the example of Fig. 10. There is still a one-to-one corresp
dence betweenQ5Fy /Fx andx, as shown in Fig. 23. As the
difference between cable lengths and distances 2-3 and
decreases, displacements get smaller and smaller. The d
enceQB2QA tends to zero, the curvature of the accessi
region boundary in Fig. 22 vanishes, and the curve of Fig
approaches the ASD case, Fig. 20. Over a finite interval
tweenQA and QB , the force-displacement relationship is
smooth function, unlike the stepwise dependency shown
Fig. 20 ~corresponding to the limit of very small motions!.

Let us now deal with the system of Fig. 9~with rigid,
impenetrable disks and frictionless contacts that do not re

FIG. 22. Minimization problem in the plane of coordinates
node 1, for the system of Fig. 21 without the ASD. The access
part of configuration space~outside the hatched zone! is convex. Its
boundary has sharp corners (A andB), but, unlike in Fig. 8 corre-
sponding to the same problem within the ASD, displays curvat
in between. Tangents to that curve atA andB are drawn.

FIG. 23. Force ratioQ versus coordinatex of node 1 for the
system of Fig. 21, without the ASD.
g

-

-4
er-
e
3
e-
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tension! outside the ASD. The accessible domain in the co
ordinate plane is, as opposed to the previous cases, no lo
convex, as shown in Fig. 24. The upper limitQA of the Q
interval for which positionA is stable is now larger than th
lower limit QB of the Q interval for which positionB is
stable. Because of thisbistability for QB<Q<QA , the Q
versusx relation now exhibits hysteresis, as shown in F
25.

As shown in Sec. VI C, contact law~3.5!, which allows
for some bounded tensile forces in the contacts, is such
both equilibrium positionsA and B will be simultaneously
possible for some values ofQ, in the system of Fig. 9.Q then
varies withx exactly as shown in Fig. 25, withQA51/A3
1 f 0 /Fy andQB51/A32 f 0 /Fy .

One may note, however, that the plasticity due to co
sion of finite strength differs from the one due to geomet

le

e

FIG. 24. Same as Figs. 8 and 22, in the case of the system
Fig. 9, without the ASD. The continuous straight lines are the t
gents to the boundary curve at pointsA andB.

FIG. 25. Same as Figs. 20 and 23, in the case of the syste
Fig. 9 outside the ASD. The force-displacement relation is n
history dependent, as shown by the arrows.
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rearrangements in the two following respects.~1! With con-
tact law ~3.5!, plasticity does not disappear in the limit o
small motions~when the ASD becomes valid!. ~2! It is sen-
sitive to themagnitudeof external forces, not only to thei
direction. The figure analogous to Fig. 25 in the (Q
5Fx /Fy ,x) plane now depends on the value ofFy . When
Fy is very much larger thanf 0, the cohesive strength o
contacts can be neglected and vanishes as a source of p
dissipation.

On going from the elementary example dealt with in th
section to larger and larger systems, it might be expected
curves like Fig. 25, forces~like F) averaging to stresses an
displacements~like x) to strains, will gradually look like Fig.
19. In larger systems, the curve of Fig. 25 will look like
staircase. Presumably, as the system size increases, the
ber of the steps, and their amplitude, if expressed in term
intensive quantities, will tend to zero. Then the smoothn
of the curves sketched in Fig. 19might be recovered in the
thermodynamic limit. Whether it actuallywill is of course
not obviousa priori; a careful statistical analysis@49# is re-
quired. In the case of systems treated within the ASD, e
step of the resulting staircase will be retraced back and fo
without any irreversibility. Such models can be expected
share the properties of the lattice system of Ref.@17# and
Sec. VII B 8, in which the staircase does indeed approac
smooth stress-strain curve in the thermodynamic limit.~But
this curve is unique; one cannot obtain Fig. 19 in such
case.!

The difference between plasticity of cohesive and non
hesive grains that was pointed out above is reminiscen
the difference in the behavior, under growing hydrosta
pressure, of sands and clays@19#. As the magnitude of the
load increases~but its direction is fixed!, the level of plastic
deformation in the cohesive material~clay! is much higher
than in the noncohesive one~sand!.

It is also interesting to note that some theories of fricti
between solid surfaces@48# are, just like the mechanisms fo
internal friction that we invoke here, based on the histor
dependent selection of one among several possible s
equilibrium configurations.

C. Consequences of isostaticity

We focus here on systems of frictionless, cohesionle
and rigid spheres@the contact law being~3.1!# in equilibrium
under a given load, for which it was shown, in two ste
~Secs. VI and VIII! that the force-carrying backbone is a
isostatic structure. We discuss some specific consequenc
this property. In the simple example treated in Sec. IX B j
above, both equilibrium configurationsA and B correspond
to isostatic contact structures, and it is easy to predict
which value of the loading parameters the system w
change from one to the other. Exploiting the isostatic
property, we will show here that such a prediction can,
some extent, be done in an arbitrary system.

In this subsection, we consider only the backbone, ign
ing the rest of the system. We suppose that grains have
renumbered, so that indexm, with 1<m<Nf , labels only
the degrees of freedom of objects that belong to the ba
bone. We shall also adopt the convention that the wh
backbone does not move as a rigid body~thus excluding the
stic
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k0 corresponding degrees of freedom from the list!. Like-
wise, 1< l<N here labels only the force-carrying contac
(N5Nf).

1. Response to perturbations, without rearrangement

Isostaticity of the whole structure means that matrixG
and its tranposeGT are square and have an inverse. Not on
are equilibrium forces, given the load, uniquely determin
but it is also possible to predict how small external for
increments~on the backbone! will be distributed in the ex-
isting contacts. Changing the load from (Fm

ext)1<m<Nf
to

(Fm
ext1dFm

ext)1<m<Nf
will result, in contactl, in the force

incrementd f l , given by

d f l5~GT! lm
21dFm

ext5Gm l
21dFm

ext ~9.1!

~summation over repeated indices implied!.
The backbone being rigid, this change in forces does

entail any displacement:um50 for eachm. This correctly
describes the mechanical response of the granular as
blage as long as all contact forces remain positive. T
should be the case, in a finite system, for sufficiently sm
perturbations of the initial load.

2. Dual response of velocities to bond length variations

Parallel to the one-to-one correspondence between con
forces and external loads expressed by Eq.~9.1!, is the in-
versible linear mapping between velocities and relative n
mal velocities in the contacts. There is no compatibility co
dition in the absence of hyperstaticity, and one may imp
arbitrary values on relative normal velocities (dVl)1< l<N for
the whole list of contacts. The resulting velocities of t
spheres are then

Vm5Gm l
21dVl ~9.2!

~summation overl implied!. On comparing to Eq.~9.1!, it
appears that the same matrix elementGm l

21 is equal both to
the force increment in contactl created when a unit externa
force is exerted on the coordinatem, on the one hand, and t
the velocity coordinatem whendV is equal to 1 in contactl
and to zero in all other contacts, on the other hand. Suc
symmetry in response functions was remarked by Mouka
@34#, who derived it by different means.

3. Response to perturbations: Structural rearrangements

The particular form of mechanical response expressed
Eq. ~9.1!, in which no motion occurs and the load increme
is supported by the initially existing contacts, ceases to
relevant as soon as negative contact forces appear. In
case of a two-parameter loading mode, such as the bia
experiment at constantp in which q is gradually increased
from its initial valueq50, one may write in each contactl

f l5b l p1g lq,

where b l and g l are, due to isostaticity, geometrically de
fined coefficients. In general one finds that some of theg l are
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negative. Let us denote asL2 the set of such contacts. Th
load will no longer be supported as soon asq reaches the
value

qmax5 min
l PL2

2g l

b l
p. ~9.3!

For largerq’s, the theorem of virtual power shows that it
possible to decrease the potential energy upon opening
contactl 0 for which the minimum in the right-hand side o
Eq. ~9.3! is reached, all other contacts remaining closed. T
system will then rearrange, until a new set of contacts
created, such that the new load (p,q) is supported with posi-
tive contact forces. If one uses the ASD to describe t
motion, then, within this approximation, the new list of co
tacts, as shown in Sec. VI, is entirely determined by
system geometry alone, as the solution to a simplex prob
Outside the ASD, the new equilibrium state after the syst
rearranges might depend on specific dynamical laws. In g
eral, the range of validity of the ASD and the influence of t
dynamics are to be tested in experiments or, perhaps m
easily, in numerical simulations. However, we have ju
shown, in fact, thatthe direction of velocities at the begin
ning of the rearrangementis determined by purely geometr
cal conditions, at least ifl 0 is unique: to find those directions
just imposedVl 0

521 ~thus opening contactl 0) and dVl

50 for any lÞ l 0, from which all velocity components ar
deduced asvm52Gm l 0

21, from Eq. ~9.2!.

Simulations of disordered systems of disks@50# suggest
that l 0 is generically unique, except in situations when t
opening contacts involve a cluster of (d11)-coordinated
spheres ind dimensions. Examples of such clusters are s
of disks 8, 19, and 2, or 6 and 15, or 12 alone in Fig. 2~b!. It
is easily realized that once one contact force involving, e
disk 8 is known, then all contact forces involving disks 8, 1
or 2 are also known, and proportional to the first one. Th
they all vanish simultaneously. This means that all ma
columns (Gm l

21)1<m<Nf
are proportional to one another fo

all indicesl that label contacts ofd-spheres belonging to th
same (d11)-coordinated cluster. Returning to the determ
nation of the motion when the load ceases to be supporte
the initial list of contacts, it follows that, even though in su
a case several contacts involving the same cluster ofd
11)-coordinated spheres may simultaneously open,
uniqueness of the initial velocities, up to a common amp
tude factor, is preserved for all spheres that do not belon
the said cluster.

4. Fragility

When a rearrangement occurs after a load increment,
mechanical response of the granular assembly, unlike the
expressed by Eq.~9.1!, involves both force changesanddis-
placements. It depends on the possibility of closing conta
that are not present in the initial equilibrium configuratio
This geometric information is not contained in matrixG,
which depends only on the network of initially existing co
tacts. One could thus study a second type of respons
perturbations, which involves displacements. To see wh
of the two kinds of response is more relevant for the mac
scopic mechanical behavior, one has to impose perturbat
ne
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that possess some macroscopic meaning, such as chang
q in a biaxial experiment. Then, assuming to fix notation th
q is increased from zero, two cases need to be conside
Either the thermodynamic limit ofqmax, as defined in Eq.
~9.3!, is positive, or it is equal to zero. In the first case, the
exists a finite interval of stress for which no motion occurs
the continuum limit, and the mechanical response discus
in the preceding sections in terms of the sole matrixG is
macroscopically relevant. In the second case, the gran
material might be appropriately termedfragile, since, in the
thermodynamic limit, arbitrarily small macroscopic perturb
tions provoke rearrangements of the contact structure. T
any macroscopic mechanical experiment involves displa
ments; the sole knowledge of one network of contacts t
corresponds to a given value of the loading parameters is
sufficient. The response expressed by the matrixG alone is
not the macroscopically relevant one.

Our simulations of frictionless rigid disks@17,50,49#
show that such systems are indeed fragile in this sense.6

5. An algorithm to compute a sequence
of equilibrium configurations

This suggests the following procedure to determine
sequence of equilibrium states reached by an assembl
rigid, frictionless, cohesionless spheres under varying l
(p,q), without resorting toany dynamical parameter~with-
out introducing any inertia or mechanism of dissipation!.

~1! Starting from an equilibrium configuration, increas
the loading parameterq until the contact forcef l 0

vanishes.
~2! Move grains in the direction determined by the ope

ing of contactl 0, the others remaining closed. Keep the sa
prescription for the grain trajectories as for the initial velo
ties, taking into account the rotation of vectorsni j , until
some new contactl 1 is created, such that the new contact li
replacingl 0 ~now open! by l 1, defines an isostatic structure

~3! If, in the new contact structure, the contact forces t
balance the load are all positive, a new equilibrium sta
corresponding to the new load, has been reached: one
go back to step~1! and further increaseq. Otherwise, some
contact forces are negative. Pick up the one with the high
tensile force, call itl 0, and go back to step~2!, with the new
contact list.

This algorithm has been implemented by G. Combe a
the present author@50#. We propose to name it the ‘‘geome
ric quasistatic method’’~GQSM!. It does involve arbitrary
ingredients: there is no reason to forbid other openings
contacts once intersticehl 0

has reached a finite positiv
value. Its great advantage is the possibility to compute
jectories from the sole knowledge of the system geometr

The system evolution, under a varying load, appears a
sequence of equilibrium states that are separated
‘‘jumps’’ or rearrangements, in which the list of active con
tacts is altered. In a phase of equilibrium, the forces
carried by a minimum list of contacts. In a phase of motio

6The fragility property is in fact contained in the results stated
Sec. VII B 8, as any stress increment, however small, that is
parallel to the preexisting stress entails some additional strain in
thermodynamic limit.
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normal relative velocities, among the whole bond list, a
localized on one bond ~several if a structure—a list o
bonds—larger than the contact structure is considered!. Both
maximum localization phenomenaare related to geometri
constraints.

The predictions of the GQSM algorithm were compar
with those of other methods that resort to dynamical mod
~and, as argued in the Introduction, also involve arbitra
nonphysical features!. The results will be presented els
where. As mentioned above, mechanical properties, at
level of individual trajectories in configuration space, cann
be expected to be uniquely determined outside the A
However, in view of the important role of the geometr
which determines exactly the value of the loading parame
for which the system should rearrange and the direction
the initial velocity vector, it can be hoped that the statisti
properties of such trajectories that are relevant for the m
roscopic laws will present little dependence on dynami
features of the system~such as masses or dissipative sho
laws!.

6. Rearrangements within the ASD

Within the approximation, as the equilibrium state cor
sponding to a given load is unique, there is no need to re
to an incremental approach. If one does so, however, then
whole rearrangement event is geometrically determined
can be computed with the GQSM as presented above. T
it will be observed, on performing step~3! of the algorithm,
that the new contact structure, as soon as a new conta
created, supports the load with only positive contact forc
Thus, unlike in the general case@50#, no cascade of succes
sive rearrangements occurs in step~3!. Rearrangements ar
simpler events in which one element of the contact struc
is replaced by another.

Let us prove this statement. LetS0 denote the old list of
contacts andS1 the new one. Both structures are isosta
and for any given load one can find unique values of b
sets of bond forces (f l) l PS0

and (f l) l PS1
that ensure equilib-

rium. In the following, members of these two sets, in order
distinguish them, are written down with a superscript:f l

(0)

and f l
(1) , respectively, denote the force carried by bondl as

computed with structuresS0 andS1.
Recalling also the notation of the preceding paragraphS1

is equal toS0, deprived of contactl 0, to which contactl 1 is
added. When the valueqmax of the loading parameter i
reached,f l 0

0 has decreased to zero. This means that, exc

tionally, the smaller structureS0\$ l 0%5S1\$ l 1% can support
the load, and one hasf l 1

(1) , while f l
(1)5 f l

(0) for each l

PS0\$ l 0%. As we assume, for simplicity, that contact forc
reach zero separately, there exists a finite range of pos
incrementsdq such that one hasf l 0

(0),0, while f l
(0).0 for

l PS0\$ l 0%, for q5qmax1dq. Likewise, reducing thedq in-
terval if needed, we require the conditionf l

(1).0 for l
PS1\$ l 1%.

We now pick up one such value ofq, and evaluate the
variationdW of the potential energy~which corresponds to
this value ofq) in the rearrangement. On the one hand, o
may obtaindW by applying the theorem of virtual work to
structureS0. As contactl 0 has opened, the correspondin
e
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relative normal displacement is negative,dul 0
,0, while

dul50 for eachlÞ l 0. Therefore, becausef l 0
(0),0, one has

dW52 f l 0
(0)dul 0

,0.

On the other hand, one may obtaindW by applying the theo-
rem of virtual work to structureS1. As contactl 1 has closed,
the corresponding relative normal displacement is posit
dul 1

,0, while dul50 for each lÞ l 1. Therefore, because

dW52 f l 1
(1)dul 1

,0, one has

f l 1
(1).0.

Thus the new contact structure supports the load with p
tive contact forces as soon asq.qmax, and a new stable
equilibrium state has been reached.

In the general case, we stressed the difference betwee
mechanical response of the granular system without r
rangement, which can be deduced from the geometry of
contact structure via matrixG, and the mechanical respons
involving some rearrangement, the determination of wh
requires some additional prescription~such as that of the
GQSM! to move the particles. This difference is much le
important within the ASD: as the matricesG pertaining to
either structure do not change in the motion, all displacem
coordinates will simply be found as follows:

um5hl 1
Gm l 1

21, ~9.4!

wherehl 1
denotes the initial opening of contactl 1 and the

matrix G is that of structureS1.
Equations~9.2! and ~9.4! differ only by a scale factor,

intersticehl 1
. There is nothing especially singular in the di

tribution of open interstices in dense granular systems
equilibrium. So it can be expected that macroscopic avera
corresponding to both response functions~9.2! and ~9.4! are
proportional to one another. Moreover, the response with
rearrangement, expressed by Eq.~9.2!, is the same with and
without the ASD.

In the following subsection, we derive explicitly the form
of the macroscopic response function to small increment
applied external forces, in the case of the triangular latt
model. These are large scale averages of~combinations of!
microscopic responses expressed by Eq.~9.4!. We shall
therefore speculate that the results to be derived below,
the form of such macroscopic Green’s functions, are a
valid for the average of response functions without re
rangements in general.

D. Macroscopic response of the triangular lattice model

In the model system studied in Ref.@17#, the results of
which are recalled in Sec. VII B 8, it is possible to find th
form of macroscopic equations to be solved when a sm
density of external forcesdfext is superimposed over an ini
tial equilibrium state. To do so, one just needs to translate
properties stated in Sec. VII B 8 into incremental form.

First, let us impose, without loss of generality, a few co
ditions on functionf defined in Eq.~7.12!. It is convenient to
choose a symmetric function ofeab andeba , the derivation
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in Eq. ~7.13! being taken regarding both strain compone
as independent variables. Then, defining ine= space a norm
ie= i by

ie= i25e= :e=5e11
2 12e12

2 1e22
2 ,

one may enforce~replacingf by f /i“ f i) the condition

i“ f i51, ~9.5!

everywhere onS.
One starts from an equilibrium state in which the stre

field is s= , which is assumed to stay strictly inside the su
ported range defined by inequalities~7.9!, everywhere in the
system. This initial state is also characterized by a displa
ment fieldu0 and a strain tensor fielde= @everywhere onS,
and abiding by Eq.~7.13!#, the origin being defined by the
reference state~the undisturbed regular lattice of spacinga).
One then looks for the stress increment fieldds, displace-
ment increment fieldu, and strain increment fieldde that
result from the application ofdfext. The problem is dealt with
to first order in any of these quantities, which are linear
dfext, assumed small.

Let us define

Aabgd5
]2f

]eab]egd
,

a fourth-order tensor that depends one= . One has, upon dif-
ferentiating the macroscopic law

sab5l
] f

]eab
,

the decomposition of stress increments as

dsab5dsab
(1)1dsab

(2) ,

with

dsab
(1)5lAabgddegd

~summation over repeated indices! anddsab
(2)5dlsab .

Condition ~9.5! yields by derivation

Aabgd

] f

]eab
50,

whence the orthogonality betweens andds (1). Sincee= must
remain onS, de is also orthogonal tos.

In view of the symmetry of the stress tensor and of
conditions imposed on functionf, tensorA satisfies the fol-
lowing symmetries:

Aabgd5Abagd5Aabdg .

Because it is a second-order derivative, one also has

Aabgd5Agdab .

TensorA is thus endowed with the same symmetry prop
ties as a tensor of elastic constants~or of viscosity coeffi-
cients!.
s

s
-

e-

e

-

We have seen that it might be viewed as a linear oper
within the space of symmetric second-order tensors that
orthogonal tos= , or, in other words, within the tangent plan
to surfaceS in strain space. Because of the strict convex
of D, this operator ispositive definite~this is easily realized,
as the curvature ofS is turned inward!.

Transforming the equilibrium equation into one for th
unknownsu anddl using Eqs.~7.10!, one obtains

]b@lAabgd]dug#2]b~dlsab!1d f a
ext50 ~9.6!

(]a denoting a derivative with respect to coordinatea) while
the displacement field should satisfy

sab]bua50. ~9.7!

Equations~9.6! and~9.7! supplemented by suitable bounda
conditions define anelliptic boundary value problem, be-
cause of the positive-definiteness of operatorA. The solution
is unique provided two conditions~in 2D! involving u and/or
its normal derivatives are specified everywhere on the sys
boundary.

We now turn to the situation when the initial stress field
a uniform hydrostatic pressure:

sab5P0dab ,

with a position-independent pressureP0. One may redefine
function f so thatl coincides withP0 in such a case. The
corresponding tangent space toS is then the space of trace
less tensors.

In general, tensorA reflects the common symmetries o
the material~the triangular lattice! and the stress tensor. I
this particular case, it will possess all the symmetries of
regular triangular lattice. The tensor of elastic constants
that case@51# has the same symmetries as in an isotro
medium. Because it operates within the space of trace
tensors, tensorA reduces to a scalarK: one has, for any
traceless strain increment,

Aabgddegd5Kdeab .

Equation~9.6! has become

KP0¹2u2“~dP!1dfext50,

while Eq. ~9.7! now states that the displacement field shou
be divergenceless:

“•u50.

One recognizesthe Stokes problem for viscous incompre
ible flow, the displacement replacing the velocity field a
the productKP0 playing the role of the shear viscosity.

Green’s functions for the Stokes problem can be fou
e.g., in @52#. In an infinite 2D medium, the velocity field
varies logarithmically with the distance to the point where
concentrated force is applied.

E. Discussion

From the results just above, it can be concluded that
form of the macroscopic equations ruling the displacem
field created by a small perturbation to a prestressed gran
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sample in equilibrium should be elliptic, provided the micr
scopic rearrangements are dealt with within the ASD. Fr
the discussion at the end of Sec. IX C 6, we expect that
eratorG21, in the general case, also averages macrosc
cally as the Green’s function of an elliptic second-ord
partial-differential operator. One may obtain a suitable m
roscopic average on taking, e.g., the mean of all matrix
mentsGm l

21 for which the vector pointing from bondl to the
center of the grain to which coordinatem belongs is in some
prescribed small neighborhood of a given vector.

G21 rules the response without rearrangement. T
general—and, in view of the fragility property, mo
relevant—case of mechanical response involving rearran
ments outside the ASD appears to involve more geome
information than the one contained in matrixG: it was ob-
served@50# that step~3! of the GQSM algorithm introduced
in Sec. IX C 5 could involve a long sequence of element
rearrangements replacing one contact by another. Unlike
distribution of open gaps between adjacent particles, on
the magnitude of such complex rearrangements is quite w
and might significantly affect the macroscopic response
terms of dispacements. This will be studied in a forthcom
publication. In the case of a disordered granular assembly
small parameter, like the level of polydispersity of disks
the triangular lattice model, is available to control the val
ity of the ASD. As found in Sec. VIII, stable equilibrium
states of frictionless disks or spheres are especially scarc
configuration space, as full rigidity is required. Outside t
ASD, impenetrability constraints do not limit a convex a
cessible domain of configuration space. Whereas the r
from one equilibrium state to another, within the ASD, c
be straight, it might have to follow a long and tortuous pa
outside the approximation.~The ASD amounts to simplify-
ing this complex geometry, straightening up local curvatur
etc.!

Interestingly, Tkachenko and Witten@35#, following a
suggestion by Alexander@40#, speculated that,as a conse-
quence of the isostaticity property, the mechanics of friction-
less sphere packings should be described at the contin
level by laws of the type proposed in Refs.@12,13#: the re-
sponse to perturbing force fields satisfieshyperbolicpartial
differential equations. From consideration of the flop
modes that appear within a subsystem that is isolated f
the rest of the sample, they derived a similar directio
structure for matrixG21 as for the macroscopic response
such theories: in a sample limited by a free surface in
upward direction, force perturbations are not felt above
point where they are introduced.

Although we do not venture here to speculate on the fo
of macroscopic equations that rule the mechanical respo
with rearrangements in a general, disordered system
which the ASD might not be valid, our conclusions above
go far enough to clearly contradict the ones of@35#, since
those are concerned with the same object~operatorG21). An
explanation for this discrepancy could be that Tkachen
and Witten mainly based their conclusions on the obse
tion of packings~numerically! obtained by sequential depo
sition algorithms under gravity.

When the stress tensor approaches the boundary o
region of supported loads@i.e., when one of the conditions i
Eq. ~7.9! is almost an equality# one can observe@17# for the
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triangular lattice model that the list of force-carrying co
tacts approaches a limit that comprises all the bonds par
to two of the three lattice directions, and none of the bon
parallel to the third. The topology of the backbone thus a
proaches that of a square lattice. In this particular case@35#,
it is easy to check that a description in terms offorce propa-
gation, involving hyperbolic equations, applies. The margi
ally supported stress states of this model are the analog o
Coulomb condition for an isotropic medium. When the Co
lomb criterion is everywhere satisfied as an equality, the m
terial is everywhere on the verge of plastic failure, and it h
long been known~and exploited for the evaluation of critica
loads@53#! that the macroscopic equations are of the hyp
bolic type. This situation has been termed ‘‘incipient failu
everywhere’’~IFE! in @12,13#.

One may conjecture that deposition algorithms@54,55#
will systematically produce internal states close to IFE. S
cifically, we expect sequential deposition under gravity
result in the ‘‘active’’ Rankine state, in which the pressu
on the lateral walls is barely sufficient to contain macr
scopic plastic flow of a horizontal granular layer sumitted
its own weight. In the case of disks with a small or moder
polydispersity in 2D, the deposition algorithms do in fa
produce networks of force-carrying contacts that are v
close to the limiting states of the triangular lattice model~a
deformed square lattice!. Therefore, we suspect tha
Tkachenko and Witten’s arguments apply only to those p
ticular cases of limit states or IFE.

Apart from the arguments put forward in@35#, there are
other aspects in which the general properties we have b
discussing as well as the numerical results obtained on
triangular lattice model appear at odds with the assump
of a direct relationship between stress components and
lated theories. Leaving a more complete discussion to su
quent work, let us merely point out that the nature of t
boundary conditions has dramatic effects if the macrosco
equations are hyperbolic. In fact, if a rigid boundary tran
mitting a stress is replaced by a distribution of extern
forces imposed independently on the grains that are clos
the edge, such theories predict this change to significa
affect the whole system~which has lost its rigidity!. In our
experience@9,18#, some rearrangement does occur, but
effects are confined to a boundary layer of finite depth.

We also note that our results disagree with some
Moukarzel’s@33,34#, predicting perturbations due to a loca
ized force to increaseexponentiallywith distance. Although
his results are very accurate and were obtained on very l
systems, thepropagativenature of forces, which can be ca
culated from ‘‘top’’ to ‘‘bottom’’ in a single sweep, is an
explicit ingredient of his model, which was adapted from t
one of @32#. Our results on the triangular lattice model di
agree with his because this very large effect of force per
bations@or, equivalently—see Eqs.~9.1! and~9.2!—of bond
length variations# would cause the level of distortion of th
regular lattice, due to the polydispersity of disks, to increa
very fast with the system size. Rather, we observed it
approach a finite thermodynamic limit. Once again, we s
pect that the very peculiar properties obtained in these s
ies stem from the consideration of a special case in wh
forces happen to possess a propagative nature.
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Finally, the~provisional! conclusion we propose here, a
already mentioned in Sec. VII E, is that the rigidity of th
grains and the isostaticity property do notnecessarilyentail
very special, critical, or singular macroscopic mechani
properties. Moreover, we expect—as systems dealt w
within the ASD exhibit the same kind of elasticity as ne
works of rigid cables—that if unusual, exotic properties e
ist, then they are related to the displacements~the rearrange-
ments! rather than the network of forces~or the operatorG
attached to it!.

X. CONCLUSION AND PERSPECTIVES

Let us first briefly summarize the main results presen
in this paper. Specializing to frictionless grains, and assu
ing that granular packings, under slowly varying loads, te
to stable equilibrium states, we have shown that geom
determines, to a large extent, the mechanical behavio
such materials.

Spatial arrangements of granular packings in equilibri
under a given load are quite specific points in configurat
space. Rigid grains that exert only normal contact forces
one another, once submitted to a supported load, will gen
cally pack in such a way that the problem is isostatic, i
there is no indeterminacy of forces. The value of all cont
forces is determined by equilibrium equations and the ge
etry of the contact structure. This yields a rigorous up
bound on the contact coordination number of any packing
rigid grains. These properties hold for compressive or ten
contact forces. Contact structures, in equilibrium, are not
ways rigid, especially~but not exclusively! in the case when
contacts can sustain tensions. Even if loose particles, w
carry no force, are discarded from the count, the upper bo
on the coordination number might not be reached.

If the packing is such that the approximation of sm
displacements might be well justified, in particular in t
case of regular arrangements on lattices, stronger prope
were established, provided the problem can be coped wit
the framework of convex optimization theory~which re-
quires the definition of a potential energy, thus exclud
finite strength cohesion!. Then ~1! not only the forces once
the contact structure is known, but the force-carrying str
ture itself is entirely determined by the system geometry.~2!
Grain positions are also determined, apart from poss
‘‘floppy mode’’ motions, of bounded amplitude, that do n
affect the value of the potential energy.~3! Displacements
from the reference configuration on the one hand andcontact
forces on the other handare the solutions to two optimiza
tion problems in duality.~4! For rigid grains, force-carrying
structures are the exact analog of cost-minimizing direc
paths in scalar transport problems.

Such situations are thus very attractive from a theori
point of view: the reduction of the mechanical problem
one of random geometry is complete, and analogies w
other models of theoretical statistical physics~directed per-
colation, directed polymers in a random environment! can be
drawn and exploited. However, some important features
granular mechanics are absent: such systems are devo
plasticity and hysteresis.

Pursuing the stability analysis beyond the ASD in the c
of disks or spheres, we have shown that the force-carry
l
th
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structure must be rigid if contacts do not withstand tensi
because any floppy mode would imply instability. This e
tails that the force-carrying backbone in systems of rig
spheres is, generically, an isostatic structure; its coordina
number is equal to 2d in dimensiond. Analogous systems o
cables~which resist tension but not compression!, on the
other hand, will generally keep some amount of floppine
since mechanisms in the equilibrium state are all stable.

Assemblies of frictionless grains will, in general, exhib
internal friction, due to the multiplicity of stable equilibrium
states corresponding to the same external load. This n
uniqueness might stem from the finite extent of rearran
ments or from bounded cohesion forces. If submitted
slowly varying loads, packings of rigid grains will evolve vi
a succession of jumps or crises separated by phases of
The isostaticity property implies, for a system of rigid fric
tionless spheres, that the concentration of forces is maxi
during a phase of rest~forces cannot be carried by a strict
smaller set of contacts!, and that the concentration of defo
mation is maximal at the beginning of a jump~there cannot
exist a strictly smaller list of interstices in which relativ
normal velocities are not equal to zero!.

Although the motion in a rearranging event depends
the actual granular dynamics, the forces during a phas
rest, and the direction of velocities at the beginning of m
tion, are geometrically determined.

Two kinds of response functions to force increments c
be studied, depending on whether the perturbation provo
a change in the contact list. Some recent studies of resp
functions, without rearrangement of the grains, were d
cussed and we argued that some of their conclusions m
be specific to sequential deposition models, in which for
can be propagated along a preferred direction. The frag
of frictionless granular assemblies in the thermodynam
limit implies, however, that macroscopically meaningful pe
turbations always involve some amount of rearrangemen

The results of the present article suggest both general
spectives and specific problems, to be dealt with in fut
work. An important feature of granular materials is the sp
sity, in configuration space, of equilibrium configuration
These, especially for rigid grains, have very specific char
teristics. Moreover, they are generally suitable forone par-
ticular load. In such circumstances, it might not be adequ
to first choose one specific geometric arrangement and c
tact structure, built, e.g., by some convenient algorithm t
respects impenetrability conditions, andthen apply external
forces and see how they could be balanced by contact for
The list of active contacts is itself chosen according to
external load. Many recent studies have been devoted to
way forces distribute among a fixed list of contacts, and
the ensuing statistics of contact force values. Although m
els along these lines might capturesomeof the physics, they
ignore displacements. Displacements, as our results have
ply shown here, are always part of the problem. The v
definition of a force requires the consideration of som
amount of displacement. A normal reaction force in the fr
tionless contact between two rigid objects is a geometric
defined quantity, a Lagrange parameter associated with
impenetrability constraint in configuration space. Large
semblies of frictionless rigid grains are fragile: tiny load i
crements will be associated with rearrangements of the c
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tact structure. If one wishes to understand the macrosc
mechanical behavior of granular systems and its relation
to grain-scale phenomena, the question of themagnitudeof
such rearrangements, in which the system moves from
equilibrium state to another, is crucial.

Other, more specific questions, that are related to statis
and the continuum limit, naturally follow from the mechan
cal properties we have been presenting. When is the AS
good approximation, apart from lattice models? Are the sa
states periodically revisited in cyclic solicitations? What w
be the density and the effect of floppy modes in system
nonspherical frictionless particles? Will the staircasel
stress-strain curve approach a smooth limit when the sys
size increases? To what extent are rearrangements sen
to the actual dynamical rule? Such problems would ben
from careful numerical simulations, and we shall addr
some of these questions in forthcoming publications.

The treatment of granular systems with friction could
tackled with a similar approach to the one developed h
one could investigate the range of stability of a given cont
structure, as the load gradually varies, by purely sta
n-
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means. In the presence of friction, granular packings are
observed, in experiments and dynamic numerical simu
tions, to evolve by a succession of crises localized in tim
We expect the geometry of the assemblage to dictate,
large extent, the way such sudden motions are initiated.

It can be concluded that many of the promising prospe
as well as many of the difficulties ahead, in the study
mechanical properties of granular materials close to equ
rium, are in the understanding of the disordered, yet qu
peculiar, geometry of large systems that adapt their con
network to sustain the load.

Note added in proof.The word ‘‘simplex’’ is rather im-
properly used in this article, instead of ‘‘polyhedral conv
set.’’ We thank J. J Moreau for pointing this out.
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